Turbulent temperature fluctuations in a closed Rayleigh-Benard convection cell

被引:23
作者
Wang, Yin [1 ]
He, Xiaozhou [2 ]
Tong, Penger [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Benard convection; turbulent convection; turbulent mixing; THERMAL TURBULENCE; VELOCITY FLUCTUATIONS; SCALING EXPONENTS; BOUNDARY-LAYERS; PASSIVE SCALARS; STATISTICS; INTERMITTENCY; MODEL; FLUID;
D O I
10.1017/jfm.2019.405
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We report a systematic study of spatial variations of the probability density function (PDF) $P(\unicode[STIX]{x1D6FF}T)$ for temperature fluctuations $\unicode[STIX]{x1D6FF}T$ in turbulent Rayleigh-Benard convection along the central axis of two different convection cells. One of the convection cells is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. By changing the distance $z$ away from the bottom conducting plate, we find the functional form of the measured $P(\unicode[STIX]{x1D6FF}T)$ in both cells evolves continuously with distinct changes in four different flow regions, namely, the thermal boundary layer, mixing zone, turbulent bulk region and cell centre. By assuming temperature fluctuations in different flow regions are all made from two independent sources, namely, a homogeneous (turbulent) background which obeys Gaussian statistics and non-uniform thermal plumes with an exponential distribution, we obtain the analytic expressions of $P(\unicode[STIX]{x1D6FF}T)$ in four different flow regions, which are found to be in good agreement with the experimental results. Our work thus provides a unique theoretical framework with a common set of parameters to quantitatively describe the effect of turbulent background, thermal plumes and their spatio-temporal intermittency on the temperature PDF $P(\unicode[STIX]{x1D6FF}T)$ .
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [31] Higher-order flow modes in turbulent Rayleigh-Benard convection
    Xi, Heng-Dong
    Zhang, Yi-Bao
    Hao, Jian-Tao
    Xia, Ke-Qing
    JOURNAL OF FLUID MECHANICS, 2016, 805 : 31 - 51
  • [32] Turbulent Rayleigh-Benard convection described by projected dynamics in phase space
    Luelff, Johannes
    Wilczek, Michael
    Stevens, Richard J. A. M.
    Friedrich, Rudolf
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2015, 781 : 276 - 297
  • [33] Resolving the fine-scale structure in turbulent Rayleigh-Benard convection
    Scheel, Janet D.
    Emran, Mohammad S.
    Schumacher, Joerg
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [34] Rayleigh-Benard convection with a melting boundary
    Favier, B.
    Purseed, J.
    Duchemin, L.
    JOURNAL OF FLUID MECHANICS, 2019, 858 : 437 - 473
  • [35] Experimental measurement of spatio-temporally resolved energy dissipation rate in turbulent Rayleigh-Benard convection
    Xu, Fang
    Zhang, Lu
    Xia, Ke-Qing
    JOURNAL OF FLUID MECHANICS, 2024, 984
  • [36] Scaling Laws in Rayleigh-Benard Convection
    Plumley, Meredith
    Julien, Keith
    EARTH AND SPACE SCIENCE, 2019, 6 (09) : 1580 - 1592
  • [37] Sidewall effects in Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Lohse, Detlef
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2014, 741 : 1 - 27
  • [38] Coherence of temperature and velocity superstructures in turbulent Rayleigh-Benard flow
    Krug, Dominik
    Lohse, Detlef
    Stevens, Richard J. A. M.
    JOURNAL OF FLUID MECHANICS, 2020, 887
  • [39] Turbulent Rayleigh-Benard convection in non-colloidal suspensions
    Demou, Andreas D.
    Ardekani, Mehdi Niazi
    Mirbod, Parisa
    Brandt, Luca
    JOURNAL OF FLUID MECHANICS, 2022, 945
  • [40] Turbulent Rotating Rayleigh-Benard Convection: Spatiotemporal and Statistical Study
    Husain, A.
    Baig, M. F.
    Varshney, H.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (02): : 1 - 10