Turbulent temperature fluctuations in a closed Rayleigh-Benard convection cell

被引:23
|
作者
Wang, Yin [1 ]
He, Xiaozhou [2 ]
Tong, Penger [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Benard convection; turbulent convection; turbulent mixing; THERMAL TURBULENCE; VELOCITY FLUCTUATIONS; SCALING EXPONENTS; BOUNDARY-LAYERS; PASSIVE SCALARS; STATISTICS; INTERMITTENCY; MODEL; FLUID;
D O I
10.1017/jfm.2019.405
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We report a systematic study of spatial variations of the probability density function (PDF) $P(\unicode[STIX]{x1D6FF}T)$ for temperature fluctuations $\unicode[STIX]{x1D6FF}T$ in turbulent Rayleigh-Benard convection along the central axis of two different convection cells. One of the convection cells is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. By changing the distance $z$ away from the bottom conducting plate, we find the functional form of the measured $P(\unicode[STIX]{x1D6FF}T)$ in both cells evolves continuously with distinct changes in four different flow regions, namely, the thermal boundary layer, mixing zone, turbulent bulk region and cell centre. By assuming temperature fluctuations in different flow regions are all made from two independent sources, namely, a homogeneous (turbulent) background which obeys Gaussian statistics and non-uniform thermal plumes with an exponential distribution, we obtain the analytic expressions of $P(\unicode[STIX]{x1D6FF}T)$ in four different flow regions, which are found to be in good agreement with the experimental results. Our work thus provides a unique theoretical framework with a common set of parameters to quantitatively describe the effect of turbulent background, thermal plumes and their spatio-temporal intermittency on the temperature PDF $P(\unicode[STIX]{x1D6FF}T)$ .
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [21] Mean velocity and temperature profiles in turbulent Rayleigh-Benard convection at low Prandtl numbers
    Xu, Wei
    Wang, Yin
    He, Xiaozhou
    Wang, Xiaoping
    Schumacher, Joerg
    Huang, Shi-Di
    Tong, Penger
    JOURNAL OF FLUID MECHANICS, 2021, 918
  • [22] Large Eddy Simulation of Turbulent Rayleigh-Benard Convection in a Cubic Cell
    Foroozani, N.
    Niemela, J. J.
    Armenio, Vincenzo
    Sreenivasan, K. R.
    DIRECT AND LARGE-EDDY SIMULATION X, 2018, 24 : 559 - 565
  • [23] Local boundary layer scales in turbulent Rayleigh-Benard convection
    Scheel, Janet D.
    Schumacher, Joerg
    JOURNAL OF FLUID MECHANICS, 2014, 758 : 344 - 373
  • [24] Turbulent spherical Rayleigh-Benard convection: radius ratio dependence
    Fu, Yifeng
    Bader, Shujaut H.
    Song, Jiaxing
    Zhu, Xiaojue
    JOURNAL OF FLUID MECHANICS, 2024, 1000
  • [25] Rayleigh-Benard convection in the presence of spatial temperature modulations
    Freund, G.
    Pesch, W.
    Zimmermann, W.
    JOURNAL OF FLUID MECHANICS, 2011, 673 : 318 - 348
  • [26] Universal fluctuations in the bulk of Rayleigh-Benard turbulence
    Xie, Yi-Chao
    Cheng, Bu-Ying-Chao
    Hu, Yun-Bing
    Xia, Ke-Qing
    JOURNAL OF FLUID MECHANICS, 2019, 878 : 878R11 - 878R113
  • [27] Temperature statistics in turbulent Rayleigh-Benard convection with a Prandtl number of Pr=12.3
    Wei, Ping
    Chen, Xinyu
    Lin, Chensen
    AIP ADVANCES, 2022, 12 (10)
  • [28] Kinetic energy transport in Rayleigh-Benard convection
    Petschel, K.
    Stellmach, S.
    Wilczek, M.
    Luelff, J.
    Hansen, U.
    JOURNAL OF FLUID MECHANICS, 2015, 773 : 395 - 417
  • [29] Axially homogeneous Rayleigh-Benard convection in a cylindrical cell
    Schmidt, Laura E.
    Calzavarini, Enrico
    Lohse, Detlef
    Toschi, Federico
    Verzicco, Roberto
    JOURNAL OF FLUID MECHANICS, 2012, 691 : 52 - 68
  • [30] The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-Benard convection
    Kunnen, Rudie P. J.
    Stevens, Richard J. A. M.
    Overkamp, Jim
    Sun, Chao
    van Heijst, GertJan F.
    Clercx, Herman J. H.
    JOURNAL OF FLUID MECHANICS, 2011, 688 : 422 - 442