Contraction of superintegrable Hamiltonian systems

被引:12
作者
Calzada, JA [1 ]
Negro, J
del Olmo, MA
Rodríguez, MA
机构
[1] Univ Valladolid, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
[2] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
[3] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
关键词
D O I
10.1063/1.533147
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the contraction of a class of superintegrable Hamiltonians by implementing the contraction of the underlying Lie groups. We also discuss the behavior of the coordinate systems that separate their equations of motion, the motion constants, as well as the corresponding solutions along such a process. (C) 2000 American Institute of Physics. [S0022-2488(99)02412-3].
引用
收藏
页码:317 / 336
页数:20
相关论文
共 28 条
  • [1] [Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
  • [2] Contraction of representations of 1+1 kinematical groups and quantization
    Arratia, O
    DelOlmo, MA
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 125 - 130
  • [3] Elementary systems of (1+1) kinematical groups: Contraction and quantization
    Arratia, O
    DelOlmo, MA
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1997, 45 (02): : 103 - 128
  • [4] Classical superintegrable SO(p,q) Hamiltonian systems
    Calzada, JA
    delOlmo, MA
    Rodriguez, MA
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (01) : 14 - 30
  • [5] Pseudo-orthogonal groups and integrable dynamical systems in two dimensions
    Calzada, JA
    del Olmo, MA
    Rodríguez, MA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (01) : 188 - 209
  • [6] Calzada JA, 1998, 5TH WIGNER SYMPOSIUM, PROCEEDINGS, P233
  • [7] INTEGRABLE SYSTEMS BASED ON SU(P,Q) HOMOGENEOUS MANIFOLDS
    DELOLMO, MA
    RODRIGUEZ, MA
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 5118 - 5139
  • [8] MAXIMAL ABELIAN SUBALGEBRAS OF PSEUDOUNITARY LIE-ALGEBRAS
    DELOLMO, MA
    RODRIGUEZ, MA
    WINTERNITZ, P
    ZASSENHAUS, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 135 : 79 - 151
  • [9] The conformal group SU(2,2) and integrable systems on a Lorentzian hyperboloid
    DelOlmo, MA
    Rodriguez, MA
    Winternitz, P
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1996, 44 (03): : 199 - 233
  • [10] DELOLMO MA, 1994, NONCOMPACT LIE GROUP, P181