Quantitative phase diagrams of branching and annihilating random walks -: art. no. 255703

被引:52
作者
Canet, L
Chaté, H
Delamotte, B
机构
[1] Univ Paris 06, Phys Theor & Hautes Energies Lab, F-75251 Paris 05, France
[2] Univ Paris 07, Phys Theor & Hautes Energies Lab, F-75251 Paris 05, France
[3] Ctr Etud Saclay, CEA, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1103/PhysRevLett.92.255703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the full power of nonperturbative renormalization group methods for nonequilibrium situations by calculating the quantitative phase diagrams of simple branching and annihilating random walks and checking these results against careful numerical simulations. Specifically, we show, for the 2A-->circle divide, A-->2A case, that an absorbing phase transition exists in dimensions d=1 to 6 and argue that mean-field theory is restored not in d=3, as suggested by previous analyses, but only in the limit d-->infinity.
引用
收藏
页码:255703 / 1
页数:4
相关论文
共 17 条
[1]   PROPAGATION AND EXTINCTION IN BRANCHING ANNIHILATING RANDOM-WALKS [J].
BENAVRAHAM, D ;
LEYVRAZ, F ;
REDNER, S .
PHYSICAL REVIEW E, 1994, 50 (03) :1843-1850
[2]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[3]   Nonperturbative renormalization-group study of reaction-diffusion processes -: art. no. 195703 [J].
Canet, L ;
Delamotte, B ;
Deloubrière, O ;
Wschebor, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :195703-1
[4]   Optimization of the derivative expansion in the nonperturbative renormalization group [J].
Canet, L ;
Delamotte, B ;
Mouhanna, D ;
Vidal, J .
PHYSICAL REVIEW D, 2003, 67 (06)
[5]   Theory of branching and annihilating random walks [J].
Cardy, J ;
Tauber, UC .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4780-4783
[6]   Field theory of branching and annihilating random walks [J].
Cardy, JL ;
Tauber, UC .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) :1-56
[7]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1479, DOI 10.1088/0305-4470/9/9/009
[8]  
HENKEL M, CONDMAT0402433, P26603
[9]   Non-equilibrium critical phenomena and phase transitions into absorbing states [J].
Hinrichsen, H .
ADVANCES IN PHYSICS, 2000, 49 (07) :815-958
[10]   CRITICAL-BEHAVIOR OF BRANCHING ANNIHILATING RANDOM-WALKS WITH AN ODD NUMBER OF OFFSPRINGS [J].
JENSEN, I .
PHYSICAL REVIEW E, 1993, 47 (01) :R1-R4