Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity

被引:19
作者
Schuetz, Marta K. [1 ,4 ]
Moreira, Rebeca [3 ]
Bildstein, Olivier [1 ]
Lartigue, Jean-Eric [1 ]
Schlegel, Michel L. [2 ]
Tribollet, Bernard [3 ]
Vivier, Vincent [3 ]
Libert, Marie [1 ]
机构
[1] CEA, DEN, DTN SMTM LMTE, F-13108 St Paul Les Durance, France
[2] CEA, DEN, DANS DPC SCP LRSI, F-91191 Gif Sur Yvette, France
[3] Univ Paris 06, CNRS, Lab Interfaces & Syst Electrochim, UPR 15, F-75252 Paris 05, France
[4] Aix Marseille Univ, F-13545 Aix En Provence, France
关键词
Biocorrosion; Iron-reducing bacteria; Dihydrogen; SEM micrographs; Raman microspectroscopy; Chronoamperometry; ENERGY-SOURCE; MOLECULAR-HYDROGEN; STRUCTURAL FE(III); IRON; CLAY; REDUCTION; DISPOSAL; RAMAN; MICROSCOPY; SMECTITE;
D O I
10.1016/j.bioelechem.2013.07.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The availability of respiratory substrates, such as H-2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H-2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria.The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H-2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H-2 oxidation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 40 条
[1]  
Beech I.B., 2003, Microbiology, V30, P115
[2]   Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media [J].
Bellot-Gurlet, Ludovic ;
Neff, Delphine ;
Reguer, Solenn ;
Monnier, Judith ;
Saheb, Mandana ;
Dillmann, Philippe .
JOURNAL OF NANO RESEARCH, 2009, 8 :147-156
[3]   Modelling iron-clay interactions in deep geological disposal conditions [J].
Bildstein, O. ;
Trotignon, L. ;
Perronnet, M. ;
Jullien, M. .
PHYSICS AND CHEMISTRY OF THE EARTH, 2006, 31 (10-14) :618-625
[4]   A hydrogen-based subsurface microbial community dominated by methanogens [J].
Chapelle, FH ;
O'Neill, K ;
Bradley, PM ;
Methé, BA ;
Ciufo, SA ;
Knobel, LL ;
Lovley, DR .
NATURE, 2002, 415 (6869) :312-315
[5]   Alternating Current Measurements in Scanning Electrochemical Microscopy, Part 2: Detection of Adsorbates [J].
Dao Trinh ;
Keddam, Michel ;
Ramon Novoa, Xose ;
Vivier, Vincent .
CHEMPHYSCHEM, 2011, 12 (11) :2177-2183
[6]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[7]  
2-B
[8]   Iron corrosion by novel anaerobic microorganisms [J].
Dinh, HT ;
Kuever, J ;
Mussmann, M ;
Hassel, AW ;
Stratmann, M ;
Widdel, F .
NATURE, 2004, 427 (6977) :829-832
[9]   Microbial iron respiration can protect steel from corrosion [J].
Dubiel, M ;
Hsu, CH ;
Chien, CC ;
Mansfeld, F ;
Newman, DK .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (03) :1440-1445
[10]   Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers [J].
Esnault, L. ;
Jullien, M. ;
Mustin, C. ;
Bildstein, O. ;
Libert, M. .
PHYSICS AND CHEMISTRY OF THE EARTH, 2011, 36 (17-18) :1624-1629