There is ongoing debate about how semantic information is acquired, whether this occurs independently of episodic memory, and what role, if any, brain areas such as hippocampus are required to play. We used auditory stimuli and functional MRI (fMRI) to assess brain activations associated with the incidental acquisition of new and true facts about the world of the sort we are exposed to day to day. A control task was included where subjects heard sentences that described novel scenarios involving unfamiliar people, but these did not convey general knowledge. The incidental encoding task was identical for two stimulus types; both shared the same episodic experience (lying in the brain scanner) and conveyed complex information. Despite this, and considering only those stimuli successfully encoded, compared to a baseline task, a more extensive network of brain regions was found to be associated with exposure to new facts including the hippocampus. Direct comparison between the two stimulus types revealed greater activity in dorsal, ventrolateral and dorsomedial prefrontal cortex, medial dorsal nucleus of the thalamus, and temporal cortex for fact stimuli. The findings suggest that successful encoding is not invariably associated with activation of one particular brain network. Rather, activation patterns may depend on the type of materials being acquired, and the different processes they engender when subjects encode. Qualitatively, from postscan debriefing sessions, it emerged that the factual information was found to be potentially more useful. We suggest that current or prospective utility of incoming information may be one factor that influences the processes engaged during encoding and the concomitant neuronal responses. (C) 2004 Elsevier Inc. All rights reserved.