Direct inversion of the nonequispaced fast Fourier transform

被引:21
作者
Kircheis, Melanie [1 ]
Potts, Daniel [1 ]
机构
[1] Tech Univ Chemnitz, Fac Math, D-09107 Chemnitz, Germany
关键词
Inverse nonequispaced fast Fourier transform; Nonuniform fast Fourier transform; Direct inversion; Frame approximation; iNFFT; NFFT; NUFFT; INTERPOLATION;
D O I
10.1016/j.laa.2019.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various applications such as MRI, solution of PDEs, etc. need to perform an inverse nonequispaced fast Fourier transform (NFFT), i.e., compute M Fourier coefficients from given N nonequispaced data. In the present paper we consider direct methods for the inversion of the NFFT. We introduce algorithms for the setting M = N as well as for the underdetermined and overdetermined cases. For the setting M = N a direct method of complexity O(N log N) is presented, which utilizes Lagrange interpolation and the fast summation. For the remaining cases, we use the matrix representation of the NFFT to deduce our algorithms. Thereby, we are able to compute an inverse NFFT up to a certain accuracy by means of a modified adjoint NFFT in O(M log M + N) arithmetic operations. Finally, we show that these approaches can also be explained by means of frame approximation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:106 / 140
页数:35
相关论文
共 29 条
[1]   TRIGONOMETRIC INTERPOLATION AND QUADRATURE IN PERTURBED POINTS [J].
Austin, Anthony P. ;
Trefethen, Lloyd N. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) :2113-2122
[2]   A framework for discrete integral transformations I - The pseudopolar Fourier transform [J].
Averbuch, A. ;
Coifman, R. R. ;
Donoho, D. L. ;
Israeli, M. ;
Shkolnisky, Y. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :764-784
[3]   DIRECT INVERSION OF THE THREE-DIMENSIONAL PSEUDO-POLAR FOURIER TRANSFORM [J].
Averbuch, Amir ;
Shabat, Gil ;
Shkolnisky, Yoel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) :A1100-A1120
[4]   Random sampling of multivariate trigonometric polynomials [J].
Bass, RF ;
Gröcheng, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (03) :773-795
[5]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[6]  
Böttcher A, 2007, ELECTRON T NUMER ANA, V26, P178
[7]  
Christensen O., 2016, INTRO FRAMES RIESZ B, V2nd, DOI DOI 10.1007/978-3-319-25613-9
[8]   Nonuniform fast Fourier transform [J].
Duijndam, AJW ;
Schonewille, MA .
GEOPHYSICS, 1999, 64 (02) :539-551
[9]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA [J].
DUTT, A ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1368-1393
[10]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA .2. [J].
DUTT, A ;
ROKHLIN, V .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (01) :85-100