Modeling of transport phenomena in tokamak plasmas with neural networks

被引:19
|
作者
Meneghini, O. [1 ]
Luna, C. J. [2 ]
Smith, S. P. [3 ]
Lao, L. L. [3 ]
机构
[1] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA
[2] Arizona State Univ, Phoenix, AZ 85004 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.4885343
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-mu s per data point, makes it ideal for scenario development simulations and real-time plasma control. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] 2-DIMENSIONAL TRANSPORT OF TOKAMAK PLASMAS
    HIRSHMAN, SP
    JARDIN, SC
    PHYSICS OF FLUIDS, 1979, 22 (04) : 731 - 742
  • [32] Turbulent and neoclassical impurity transport in tokamak plasmas
    Fulop, T.
    Nordman, H.
    PHYSICS OF PLASMAS, 2009, 16 (03)
  • [33] Internal transport barrier in tokamak and helical plasmas
    Ida, K.
    Fujita, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
  • [34] Particle transport in tokamak plasmas, theory and experiment
    Angioni, C.
    Fable, E.
    Greenwald, M.
    Maslov, M.
    Peeters, A. G.
    Takenaga, H.
    Weisen, H.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [35] Bifurcation phenomena and transport in magnetized plasmas
    Voitsekhovitch, I.
    Garbet, X.
    Benkadda, S.
    Beyer, P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) : 519 - 528
  • [36] CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM
    Bhasin, Arjun
    Mistry, Aashutosh
    JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING, 2023, 30 (03) : 1 - 38
  • [37] Nonlinear Lower Hybrid Modeling in Tokamak Plasmas
    Napoli, F.
    Castaldo, C.
    Cesario, R.
    Schettini, G.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 450 - 453
  • [38] MODELING OF SOME NONSTATIONARY PROCESSES IN TOKAMAK PLASMAS
    Borisov, M. A.
    Cherkasov, S. V.
    Danilov, A. V.
    Dnestrovskij, Yu. N.
    Dnestrovskij, A. Yu.
    Field, A.
    Lysenko, S. E.
    Meyer, H.
    Vershkov, V. A.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, (01): : 96 - 98
  • [39] Modeling of dust impact on tokamak edge plasmas
    Smirnov, R. D.
    Krasheninnikov, S. I.
    Pigarov, A. Yu
    Roquemore, A. L.
    Mansfield, D. K.
    Nichols, J.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S1067 - S1072
  • [40] TOKAMAK IMPURITY TRANSPORT MODELING
    HULSE, R
    POST, D
    BRAU, K
    GOELER, SV
    HINNOV, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 868 - 868