Cylindrical and spherical soliton collision of electron-acoustic waves in non-Maxwellian plasma

被引:8
作者
El-Labany, S. K. [1 ]
Sabry, R. [1 ,2 ]
Moslem, W. M. [3 ]
Elghmaz, E. A. [1 ,4 ]
机构
[1] Damietta Univ, Theoret Phys Grp, Dept Phys, Fac Sci, New Damietta 34517, Egypt
[2] Salman bin Abdulaziz Univ, Dept Phys, Coll Sci & Humanitarian Studies, Alkharj, Saudi Arabia
[3] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[4] King Khalid Univ, Univ Ctr Girls Study, Abha, Saudi Arabia
关键词
Nonlinear wave propagation; Auroral zone plasma; Electrostatic waves; FEATURING TSALLIS DISTRIBUTION; SHOCK-WAVES; PROPAGATION; FIELD; BEAM; INSTABILITY; GENERATION; DRIVEN; NOISE;
D O I
10.1007/s10509-013-1671-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Delta (A) | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio alpha and nonthermal parameter beta have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth's auroral zone is highlighted.
引用
收藏
页码:773 / 780
页数:8
相关论文
共 50 条
  • [31] Dissipative electron-acoustic solitons in a cold electron beam plasma with superthermal trapped electrons
    Shan, Shaukat Ali
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (02)
  • [32] Higher-order nonlinear equations for the electron-acoustic waves in a nonextensive electron-positron-ion plasma
    Rafat, A.
    Rahman, M. M.
    Alam, M. S.
    Mamun, A. A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 358 (01)
  • [33] Nonlinear ion-acoustic waves with Landau damping in non-Maxwellian space plasmas
    Mushtaq, Hadia
    Singh, Kuldeep
    Zaheer, Sadia
    Kourakis, Ioannis
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Nonplanar ion-acoustic solitary and cnoidal waves in a non-Maxwellian plasma: Study on nonplanar (modified) Kawahara equation
    Almutlak, Salemah A.
    Khalid, Muhammad
    El-Tantawy, Samir A.
    [J]. JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2024, 43 (02) : 577 - 594
  • [35] Twisted electron-acoustic waves in plasmas
    Aman-ur-Rehman
    Ali, S.
    Khan, S. A.
    Shahzad, K.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (08)
  • [36] Dispersion relation for pure dust Bernstein waves in a non-Maxwellian magnetized dusty plasma
    Deeba, F.
    Ahmad, Zahoor
    Murtaza, G.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (07)
  • [37] Dromion structure in (2+1)-dimensional modulated positron-acoustic waves in a non-Maxwellian magnetoplasma
    Almuqrin, Aljawhara H.
    Mouhammadoul, B. B.
    Tiofack, C. G. L.
    Mohamadou, A.
    Ismaeel, Sherif M. E.
    Alhejaili, Weaam
    El-Tantawy, S. A.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
  • [39] Effects of dust size distribution and non-Maxwellian electrons on shock waves in a dusty plasma
    Ali, Arsalan
    Khan, Majid
    Kamran, M.
    [J]. PHYSICS OF PLASMAS, 2024, 31 (05)
  • [40] Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma
    Hossen, M. R.
    Mamun, A. A.
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (12) : 2045 - 2052