Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications

被引:24
作者
Ho, Chong Pei [1 ,2 ]
Pitchappa, Prakash [1 ,2 ]
Kropelnicki, Piotr [2 ]
Wang, Jian [2 ]
Gu, Yuandong [2 ]
Lee, Chengkuo [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Agcy Sci Technol & Res, Inst Microelect, Singapore 117685, Singapore
关键词
Fabry-Perot; optical properties; photonic crystals; thin films; BROAD-BAND; FILM MULTILAYERS; REFLECTION; RESONANCE; CAVITIES; DESIGN; SLABS;
D O I
10.1109/JSTQE.2013.2294463
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Free-standing polycrystalline silicon (Si) based photonic crystal (PhC) membranes with etched circular and square holes are developed to display high reflectivity in the mid-infrared (MIR) region. Greater than 90% reflection was measured in the MIR wavelengths around 3.58 mu m. By using square air holes in the PhC membrane, the mechanical strength of the polycrystalline Si membrane can be enhanced as square air holes have a lower filling factor of 36% of air holes, compared to 49% in circular air holes while keeping the reflectance around 3.45 mu m more than 90%. Such Si PhC membranes offer opportunities for specific applications like filters. To illustrate the feasibility of such devices, simulation works are done by configuring two Si PhC membranes to create a Fabry-Perot interferometer operating in MIR region. The filtered peak shows a full width half maximum of 0.08 nm which corresponds to a quality factor of around 43800, thus demonstrating the possibility of high-resolution applications such as gas sensing and hyperspectral imaging.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
Carras M., 2010, APPL PHYS LETT, V96
[2]   Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers [J].
Corrigan, Timothy D. ;
Park, Dong Hun ;
Drew, H. Dennis ;
Guo, Shy-Hauh ;
Kolb, Paul W. ;
Herman, Warren N. ;
Phaneuf, Raymond J. .
APPLIED OPTICS, 2012, 51 (08) :1109-1114
[3]   Air-bridged photonic crystal slabs at visible and near-infrared wavelengths [J].
Crozier, KB ;
Lousse, V ;
Kilic, O ;
Kim, S ;
Fan, SH ;
Solgaard, O .
PHYSICAL REVIEW B, 2006, 73 (11)
[4]   Analysis of guided resonances in photonic crystal slabs [J].
Fan, SH ;
Joannopoulos, JD .
PHYSICAL REVIEW B, 2002, 65 (23) :1-8
[5]  
Horsley D. A., 2005, P SOC PHOTO-OPT INS, V6008
[6]  
Il Woong J., 2009, IEEE J SEL TOP QUANT, V15, P1447
[7]   Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J].
Johnson, SG ;
Joannopoulos, JD .
OPTICS EXPRESS, 2001, 8 (03) :173-190
[8]  
Jordan TM, 2012, NAT PHOTONICS, V6, P759, DOI [10.1038/nphoton.2012.260, 10.1038/NPHOTON.2012.260]
[9]   Design and Characterization of Fabry-Perot MEMS-Based Short-Wave Infrared Microspectrometers [J].
Keating, A. J. ;
Antoszewski, J. ;
Silva, K. K. M. B. D. ;
Winchester, K. J. ;
Nguyen, T. ;
Dell, J. M. ;
Musca, C. A. ;
Faraone, L. ;
Mitra, P. ;
Beck, J. D. ;
Skokan, M. R. ;
Robinson, J. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (12) :1811-1820
[10]   Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors [J].
Kim, Sora ;
Hadzialic, Sanja ;
Sudbo, Aasmund S. ;
Solgaard, Olav .
OPTICS EXPRESS, 2012, 20 (06) :6306-6315