Capturing the Best Hyperspectral Image in Different Lighting Conditions

被引:1
作者
Kordecki, Andrzej [1 ]
Bal, Artur [1 ]
机构
[1] Silesian Tech Univ, Akad 16, Gliwice, Poland
来源
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015) | 2015年 / 9875卷
关键词
hyperspectral imaging; light sources; image acquisition;
D O I
10.1117/12.2228632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of image often decides about its usability in further application. Hence, it is essential to ensure the best possible image quality at the stage of the image acquisition process. The lighting conditions are one of the most important factors affecting the quality of the obtained image. In the case of hyperspectral imaging, in comparison to standard image acquisition, selection of appropriate light sources involves additional difficulties connected with the spectral nature of the light. The article describes how the lights for such application can be selected. The proposed selection criterion is based on the accuracy of measured spectral reflectance of the object. Presented method was tested on real object and three different types of light source.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Recent advances in techniques for hyperspectral image processing [J].
Plaza, Antonio ;
Benediktsson, Jon Atli ;
Boardman, Joseph W. ;
Brazile, Jason ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo ;
Chanussot, Jocelyn ;
Fauvel, Mathieu ;
Gamba, Paolo ;
Gualtieri, Anthony ;
Marconcini, Mattia ;
Tilton, James C. ;
Trianni, Giovanna .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S110-S122
[42]   Hyperspectral Image Classification via Compressive Sensing [J].
Della Porta, Charles J. ;
Bekit, Adam A. ;
Lampe, Bernard H. ;
Chang, Chein-, I .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10) :8290-8303
[43]   Hyperspectral Image Classification Using Isomap with SMACOF [J].
Orts Gomez, Francisco Jose ;
Ortega Lopez, Gloria ;
Filatovas, Ernestas ;
Kurasova, Olga ;
Martin Garzon, Gracia Ester .
INFORMATICA, 2019, 30 (02) :349-365
[44]   HYPERSPECTRAL IMAGE ENHANCEMENT WITH VECTOR BILATERAL FILTERING [J].
Peng, Honghong ;
Rao, Raghuveer .
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, :3713-+
[45]   Hyperspectral anomaly detection using differential image [J].
Imani, Maryam .
IET IMAGE PROCESSING, 2018, 12 (05) :801-809
[46]   HYPERSPECTRAL IMAGE UNMIXING VIA QUADRATIC PROGRAMMING [J].
Yang, Zhuocheng ;
Farison, James B. .
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, :1285-1288
[47]   Hyperspectral Image Band Selection Using Pooling [J].
Liyanage, Dhanushka C. ;
Hudjakov, Robert ;
Tamre, Mart .
15TH INTERNATIONAL CONFERENCE MECHATRONIC SYSTEMS AND MATERIALS, MSM'20, 2020, :321-326
[48]   Hyperspectral Image Visualization Using Band Selection [J].
Su, Hongjun ;
Du, Qian ;
Du, Peijun .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2647-2658
[49]   Color and Hyperspectral Image Segmentation for Historical Documents [J].
Ciortan, Irina ;
Deborah, Hilda ;
George, Sony ;
Hardeberg, Jon Y. .
2015 DIGITAL HERITAGE INTERNATIONAL CONGRESS, VOL 1: DIGITIZATION & ACQUISITION, COMPUTER GRAPHICS & INTERACTION, 2015, :199-205
[50]   Intrinsic Hyperspectral Image Decomposition With DSM Cues [J].
Jin, Xudong ;
Gu, Yanfeng ;
Xie, Wen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60