Capturing the Best Hyperspectral Image in Different Lighting Conditions

被引:1
作者
Kordecki, Andrzej [1 ]
Bal, Artur [1 ]
机构
[1] Silesian Tech Univ, Akad 16, Gliwice, Poland
来源
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015) | 2015年 / 9875卷
关键词
hyperspectral imaging; light sources; image acquisition;
D O I
10.1117/12.2228632
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of image often decides about its usability in further application. Hence, it is essential to ensure the best possible image quality at the stage of the image acquisition process. The lighting conditions are one of the most important factors affecting the quality of the obtained image. In the case of hyperspectral imaging, in comparison to standard image acquisition, selection of appropriate light sources involves additional difficulties connected with the spectral nature of the light. The article describes how the lights for such application can be selected. The proposed selection criterion is based on the accuracy of measured spectral reflectance of the object. Presented method was tested on real object and three different types of light source.
引用
收藏
页数:5
相关论文
共 50 条
[31]   The effects of lighting conditions on the behaviour of laying hens [J].
Mohammed, H. H. ;
Grashorn, M. A. ;
Bessei, W. .
ARCHIV FUR GEFLUGELKUNDE, 2010, 74 (03) :197-202
[32]   SWDiff: Stage-Wise Hyperspectral Diffusion Model for Hyperspectral Image Classification [J].
Chen, Liang ;
He, Jingfei ;
Shi, Hao ;
Yang, Jingyi ;
Li, Wei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
[33]   Deep Hyperspectral and Multispectral Image Fusion With Inter-Image Variability [J].
Wang, Xiuheng ;
Borsoi, Ricardo Augusto ;
Richard, Cedric ;
Chen, Jie .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[34]   Coupling hyperspectral image data having different spatial resolutions using Multiple Co-inertia Analysis [J].
Allouche, F. ;
Hanafi, M. ;
Jamme, F. ;
Robert, P. ;
Barron, C. ;
Guillon, F. ;
Devaux, M. F. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 117 :200-212
[35]   Multiple Feature Learning for Hyperspectral Image Classification [J].
Li, Jun ;
Huang, Xin ;
Gamba, Paolo ;
Bioucas-Dias, Jose M. ;
Zhang, Liangpei ;
Benediktsson, Jon Atli ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03) :1592-1606
[36]   Adaptive Token Mixer for Hyperspectral Image Classification [J].
Lei, Shuhan ;
Zhang, Meng ;
Wang, Yuhang ;
Tang, Nan ;
Jia, Ni ;
Fu, Lihua .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 :8882-8896
[37]   Hyperspectral Image Classification With Mixed Link Networks [J].
Meng, Zhe ;
Jiao, Licheng ;
Liang, Miaomiao ;
Zhao, Feng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :2494-2507
[38]   Hyperspectral near infrared image calibration and regression [J].
Makela, Mikko ;
Geladi, Paul ;
Rissanen, Marja ;
Rautkari, Lauri ;
Dahl, Olli .
ANALYTICA CHIMICA ACTA, 2020, 1105 :56-63
[39]   Scale-space in hyperspectral image analysis [J].
Duarte-Carvajalino, Julio M. ;
Velez-Reyes, Miguel ;
Castillo, Paul .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
[40]   Center Attention Network for Hyperspectral Image Classification [J].
Zhao, Zhengang ;
Hu, Dan ;
Wang, Hao ;
Yu, Xianchuan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :3415-3425