Kernelization Lower Bounds for Finding Constant-Size Subgraphs

被引:3
|
作者
Fluschnik, Till [1 ]
Mertzios, George B. [2 ]
Nichterlein, Andre [1 ]
机构
[1] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany
[2] Univ Durham, Dept Comp Sci, Durham, England
来源
SAILING ROUTES IN THE WORLD OF COMPUTATION | 2018年 / 10936卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-319-94418-0_19
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Kernelization is an important tool in parameterized algorithmics. Given an input instance accompanied by a parameter, the goal is to compute in polynomial time an equivalent instance of the same problem such that the size of the reduced instance only depends on the parameter and not on the size of the original instance. In this paper, we provide a first conceptual study on limits of kernelization for several polynomialtime solvable problems. For instance, we consider the problem of finding a triangle with negative sum of edge weights parameterized by the maximum degree of the input graph. We prove that a linear-time computable strict kernel of truly subcubic size for this problem violates the popular APSP-conjecture.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [1] Finding Dense Subgraphs with Size Bounds
    Andersen, Reid
    Chellapilla, Kumar
    ALGORITHMS AND MODELS FOR THE WEB-GRAPH, PROCEEDINGS, 2009, 5427 : 25 - 37
  • [2] Lower Bounds for Kernelization
    Bodlaender, Hans L.
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 1 - 14
  • [3] Lower bounds on kernelization
    Misra, Neeldhara
    Raman, Venkatesh
    Saurabh, Saket
    DISCRETE OPTIMIZATION, 2011, 8 (01) : 110 - 128
  • [4] Parametric duality and kernelization: Lower bounds and upper bounds on kernel size
    Chen, Jianer
    Fernau, Henning
    Kanj, Iyad A.
    Xia, Ge
    SIAM JOURNAL ON COMPUTING, 2007, 37 (04) : 1077 - 1106
  • [5] Lower Bound for Constant-Size Local Certification
    Martinez, Virgina Ardevol
    Caoduro, Marco
    Feuilloley, Laurent
    Narboni, Jonathan
    Pournajafi, Pegah
    Raymond, Jean-Florent
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS (SSS 2022), 2022, 13751 : 239 - 253
  • [6] Parametric duality and kernelization: Lower bounds and upper bounds on kernel size
    Chen, JN
    Fernau, H
    Kanj, IA
    Xia, G
    STACS 2005, PROCEEDINGS, 2005, 3404 : 269 - 280
  • [7] A lower bound for constant-size local certification
    Martinez, Virginia Ardevol
    Caoduro, Marco
    Feuilloley, Laurent
    Narboni, Jonathan
    Pournajafi, Pegah
    Raymond, Jean-Florent
    THEORETICAL COMPUTER SCIENCE, 2023, 971
  • [8] FRACTALS FOR KERNELIZATION LOWER BOUNDS
    Fluschnik, Till
    Hermelin, Danny
    Nichterlein, Andre
    Niedermeier, Rolf
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 656 - 681
  • [9] Kernelization Lower Bounds Through Colors and IDs
    Dom, Michael
    Lokshtanov, Daniel
    Saurabh, Saket
    ACM TRANSACTIONS ON ALGORITHMS, 2014, 11 (02) : 1 - 20
  • [10] KERNELIZATION LOWER BOUNDS BY CROSS-COMPOSITION
    Bodlaender, Hans L.
    Jansen, Bart M. P.
    Kratsch, Stefan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (01) : 277 - 305