Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies

被引:22
作者
Elhakeem, Ahmed [1 ,2 ]
Hughes, Rachael A. [1 ,2 ]
Tilling, Kate [1 ,2 ]
Cousminer, Diana L. [3 ,4 ,5 ]
Jackowski, Stefan A. [6 ,7 ]
Cole, Tim J. [8 ]
Kwong, Alex S. F. [1 ,2 ,9 ]
Li, Zheyuan [10 ,11 ]
Grant, Struan F. A. [3 ,4 ,5 ,12 ,13 ]
Baxter-Jones, Adam D. G. [6 ]
Zemel, Babette S. [12 ,14 ]
Lawlor, Deborah A. [1 ,2 ]
机构
[1] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[2] Univ Bristol, Bristol Med Sch, Populat Hlth Sci, Bristol, Avon, England
[3] Childrens Hosp Philadelphia, Div Human Genet, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Genet, Philadelphia, PA 19104 USA
[5] Childrens Hosp Philadelphia, Ctr Spatial & Funct Genom, Philadelphia, PA 19104 USA
[6] Univ Saskatchewan, Coll Kinesiol, Saskatoon, SK, Canada
[7] Childrens Hosp Eastern Ontario, Res Inst, Ottawa, ON, Canada
[8] UCL Great Ormond St Inst Child Hlth, London, England
[9] Univ Edinburgh, Ctr Clin Brain Sci, Div Psychiat, Edinburgh, Midlothian, Scotland
[10] Henan Univ, Sch Math & Stat, Kaifeng, Henan, Peoples R China
[11] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[12] Univ Penn, Dept Pediat, Perelman Sch Med, Philadelphia, PA 19104 USA
[13] Childrens Hosp Philadelphia, Div Endocrinol & Diabet, Philadelphia, PA 19104 USA
[14] Childrens Hosp Philadelphia, Div Gastroenterol Hepatol & Nutr, Philadelphia, PA 19104 USA
基金
英国惠康基金; 英国医学研究理事会; 加拿大健康研究院;
关键词
ALSPAC; Bone mineral content; BMDCS; Growth models; Life-course; Mixed-effects; PBMAS; Tutorial; MIXED MODELS; CHILDHOOD; PRESSURE; MIXTURE; HEALTH; PEAK; AGE; ADOLESCENCE; PACKAGE; OBESITY;
D O I
10.1186/s12874-022-01542-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories. Methods This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed-effects (LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent trajectory models. The underlying model for each approach, their similarities and differences, and their advantages and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5-40 years. Recommendations for choosing a modelling approach are provided along with a discussion and signposting on further modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts. Results Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct trajectories throughout adolescence. Conclusions LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software.
引用
收藏
页数:20
相关论文
共 89 条
  • [31] Harrell F., 2001, REGRESSION MODELING, V1
  • [32] Osteoporosis: A Lifecourse Approach
    Harvey, Nicholas
    Dennison, Elaine
    Cooper, Cyrus
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2014, 29 (09) : 1917 - 1925
  • [33] Identifying typical trajectories in longitudinal data: modelling strategies and interpretations
    Herle, Moritz
    Micali, Nadia
    Abdulkadir, Mohamed
    Loos, Ruth
    Bryant-Waugh, Rachel
    Hubel, Christopher
    Bulik, Cynthia M.
    De Stavola, Bianca L.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2020, 35 (03) : 205 - 222
  • [34] Linear spline multilevel models for summarising childhood growth trajectories: A guide to their application using examples from five birth cohorts
    Howe, Laura D.
    Tilling, Kate
    Matijasevich, Alicia
    Petherick, Emily S.
    Santos, Ana Cristina
    Fairley, Lesley
    Wright, John
    Santos, Ina S.
    Barros, Aluisio J. D.
    Martin, Richard M.
    Kramer, Michael S.
    Bogdanovich, Natalia
    Matush, Lidia
    Barros, Henrique
    Lawlor, Debbie A.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 1854 - 1874
  • [35] Combining Longitudinal Data From Different Cohorts to Examine the Life-Course Trajectory
    Hughes, Rachael A.
    Tilling, Kate
    Lawlor, Deborah A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (12) : 2680 - 2689
  • [36] Accounting for missing data in statistical analyses: multiple imputation is not always the answer
    Hughes, Rachael A.
    Heron, Jon
    Sterne, Jonathan A. C.
    Tilling, Kate
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (04) : 1294 - 1304
  • [37] Pathophysiological Characteristics Underlying Different Glucose Response Curves: A Latent Class Trajectory Analysis From the Prospective EGIR-RISC Study
    Hulman, Adam
    Witte, Daniel R.
    Vistisen, Dorte
    Balkau, Beverley
    Dekker, Jacqueline M.
    Herder, Christian
    Hatunic, Mensud
    Konrad, Thomas
    Faerch, Kristine
    Manco, Melania
    [J]. DIABETES CARE, 2018, 41 (08) : 1740 - 1748
  • [38] Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model
    Huque, Md Hamidul
    Moreno-Betancur, Margarita
    Quartagno, Matteo
    Simpson, Julie A.
    Carlin, John B.
    Lee, Katherine J.
    [J]. BIOMETRICAL JOURNAL, 2020, 62 (02) : 444 - 466
  • [39] A comparison of multiple imputation methods for missing data in longitudinal studies
    Huque, Md Hamidul
    Carlin, John B.
    Simpson, Julie A.
    Lee, Katherine J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [40] Effect of maturational timing on bone mineral content accrual from childhood to adulthood: Evidence from 15 years of longitudinal data
    Jackowski, Stefan A.
    Erlandson, Marta C.
    Mirwald, Robert L.
    Faulkner, Robert A.
    Bailey, Donald A.
    Kontulainen, Saija A.
    Cooper, Dave M. L.
    Baxter-Jones, Adam D. G.
    [J]. BONE, 2011, 48 (05) : 1178 - 1185