Direct band gap carbon superlattices with efficient optical transition

被引:13
作者
Oh, Young Jun [1 ,4 ]
Kim, Sunghyun [1 ]
Lee, In-Ho [2 ,3 ]
Lee, Jooyoung [3 ]
Chang, K. J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[2] Korea Res Inst Stand & Sci, Daejeon 34113, South Korea
[3] Korea Inst Adv Study, Sch Computat Sci, Ctr In Silico Prot Sci, Seoul 02455, South Korea
[4] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
新加坡国家研究基金会;
关键词
ROOM-TEMPERATURE COMPRESSION; LIGHT-EMITTING DIODE; ELECTRONIC-STRUCTURE; DIAMOND; 100; GRAPHITE; PHASE; NANOTUBES; SURFACE; SEMICONDUCTORS; ALLOTROPE;
D O I
10.1103/PhysRevB.93.085201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report pure carbon-based superlattices that exhibit direct band gaps and excellent optical absorption and emission properties at the threshold energy. The structures are nearly identical to that of cubic diamond except that defective layers characterized by five- and seven-membered rings are intercalated in the diamond lattice. The direct band gaps lie in the range of 5.6-5.9 eV, corresponding to wavelengths of 210-221 nm. The dipole matrix elements of direct optical transition are comparable to that of GaN, suggesting that the superlattices are promising materials as an efficient deep ultraviolet light emitter. Molecular dynamics simulations show that the superlattices are thermally stable even at a high temperature of 2000 K. We provide a possible route to the synthesis of superlattices through wafer bonding of diamond (100) surfaces.
引用
收藏
页数:8
相关论文
共 62 条
[1]   Crystal Structure of Cold Compressed Graphite [J].
Amsler, Maximilian ;
Flores-Livas, Jose A. ;
Lehtovaara, Lauri ;
Balima, Felix ;
Ghasemi, S. Alireza ;
Machon, Denis ;
Pailhes, Stephane ;
Willand, Alexander ;
Caliste, Damien ;
Botti, Silvana ;
San Miguel, Alfonso ;
Goedecker, Stefan ;
Marques, Miguel A. L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[2]   CARBON - A NEW CRYSTALLINE PHASE [J].
AUST, RB ;
DRICKAMER, HG .
SCIENCE, 1963, 140 (356) :817-&
[3]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[4]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[5]   From zeolite nets to sp3 carbon allotropes: a topology-based multiscale theoretical study [J].
Baburin, Igor A. ;
Proserpio, Davide M. ;
Saleev, Vladimir A. ;
Shipilova, Alexandra V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (02) :1332-1338
[6]   A carbon phase that graphitizes at room temperature [J].
Baughman, RH ;
Liu, AY ;
Cui, C ;
Schields, PJ .
SYNTHETIC METALS, 1997, 86 (1-3) :2371-2374
[7]   Electronic structure and elastic moduli of the simple cubic fullerite C24 -: A new allotropic carbon modification [J].
Bekenev, V. L. ;
Pokropivny, V. V. .
PHYSICS OF THE SOLID STATE, 2006, 48 (07) :1405-1410
[8]   HEXAGONAL DIAMOND - A NEW FORM OF CARBON [J].
BUNDY, FP ;
KASPER, JS .
JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (09) :3437-&
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Electronic and transport properties of nanotubes [J].
Charlier, Jean-Christophe ;
Blase, Xavier ;
Roche, Stephan .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :677-732