On-chip multiphoton Greenberger-Horne-Zeilinger state based on integrated frequency combs

被引:6
作者
Zhu, Pingyu [1 ,2 ]
Zheng, Qilin [1 ,2 ]
Xue, Shichuan [1 ,2 ]
Wu, Chao [1 ,2 ]
Yu, Xinyao [1 ,2 ]
Wang, Yang [1 ,2 ]
Liu, Yingwen [1 ,2 ]
Qiang, Xiaogang [1 ,2 ,3 ]
Wu, Junjie [1 ,2 ]
Xu, Ping [1 ,2 ,4 ,5 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[3] AMS, Natl Innovat Inst Def Technol, Beijing 100071, Peoples R China
[4] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum information; Greenberger-Horne-Zeilinger state; frequency comb; ENTANGLED QUANTUM STATES; GENERATION; COMMUNICATION;
D O I
10.1007/s11467-020-1010-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One of the most important multipartite entangled states, Greenberger-Horne-Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Programmable four-photon graph states on a silicon chip [J].
Adcock, Jeremy C. ;
Vigliar, Caterina ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Thompson, Mark G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Blind quantum computation [J].
Arrighi, Pablo ;
Salvail, Louis .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (05) :883-898
[3]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[4]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[5]   Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb [J].
Chen, Moran ;
Menicucci, Nicolas C. ;
Pfister, Olivier .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[6]   Precise detection of multipartite entanglement in four-qubit Greenberger-Horne-Zeilinger diagonal states [J].
Chen, Xiao-Yu ;
Jiang, Li-Zhen ;
Xu, Zhu-An .
FRONTIERS OF PHYSICS, 2018, 13 (05)
[7]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[8]   Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits [J].
Erhard, Manuel ;
Malik, Mehul ;
Krenn, Mario ;
Zeilinger, Anton .
NATURE PHOTONICS, 2018, 12 (12) :759-764
[9]   Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states [J].
Farouk, Ahmed ;
Batle, J. ;
Elhoseny, M. ;
Naseri, Mosayeb ;
Lone, Muzaffar ;
Fedorov, Alex ;
Alkhambashi, Majid ;
Ahmed, Syed Hassan ;
Abdel-Aty, M. .
FRONTIERS OF PHYSICS, 2018, 13 (02)
[10]   On-Chip Multiphoton Entangled States by Path Identity [J].
Feng, Tianfeng ;
Zhang, Xiaoqian ;
Tian, Yuling ;
Feng, Qin .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (11) :3726-3733