Exact solutions to the foam drainage equation by using the new generalized (G′/G)-expansion method

被引:50
作者
Alam, Md. Nur [1 ]
机构
[1] Pabna Univ Sci & Technol, Dept Math, Pabna, Bangladesh
关键词
New generalized (G '/G)-expansion method; The foam drainage equation; NLEEs; Exact solutions; Solitary wave solutions; TRAVELING-WAVE SOLUTIONS; NONLINEAR EVOLUTION-EQUATIONS; NUMERICAL-SIMULATION; EXPANSION METHOD; KDV;
D O I
10.1016/j.rinp.2015.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The new generalized (G '/G)-expansion method is an interesting approach to find new and more general exact solutions to the nonlinear evolution equations (NLEEs) in mathematical physics and engineering. In this paper, the method is applied to construct exact solutions involving parameters for the foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions, the periodic wave and the rational function solutions are derived from exact solutions. These solutions might be imperative and significant for the explanation of some practical physical phenomena. It is shown that the method is an easy and advanced mathematical tool for solving NLEEs. (C) 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:168 / 177
页数:10
相关论文
共 44 条
[1]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Alam M.N., 2014, WALAILAK J SCI TECH, V11, P643
[3]   General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G'/G)-expansion method [J].
Alam, Md. Nur ;
Akbar, Md. Ali ;
Mohyud-Din, Syed Tauseef .
ALEXANDRIA ENGINEERING JOURNAL, 2014, 53 (01) :233-241
[4]  
Alam MN, 2014, PRAMANA-J PHYS, V83, P317, DOI 10.1007/s12043-014-0776-8
[5]  
Bekir A., 2012, Arab J. Math. Sci, V18, P73, DOI [10.1016/j.ajmsc.2011.08.002, DOI 10.1016/J.AJMSC.2011.08.002]
[6]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[7]  
Belgacem F.B.M., 2010, Appl. Math. Sci., V4, P3665
[8]  
Belgacem FBM., 2006, J. Appl. Math. Stoch. Anal, V2006
[9]  
BELGACEM FBM, 2009, PIERS ONLINE, V5, P1, DOI DOI 10.2529/PIERS090120050621
[10]   Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :745-757