A predictive estimator of finite population proportion despite missing data

被引:1
作者
Rueda, M. [1 ]
Gonzalez, S. [1 ]
Arcos, A. [1 ]
机构
[1] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
关键词
Superpopulation models; Missing data; Auxiliary information; AUXILIARY ATTRIBUTES; RANDOM NONRESPONSE; INFORMATION; VARIANCE; RATIO; REGRESSION; MODEL;
D O I
10.1016/j.amc.2014.01.128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of estimating a finite population proportion when there are missing values. The prediction approach is used to define a new estimator that presents desirable efficiency properties. Simulation studies are considered to evaluate the performance of the proposed estimator via empirical relative bias and empirical relative efficiency, and favourable results are achieved. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Bias arising from missing data in predictive models
    Gorelick, Marc H.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) : 1115 - 1123
  • [32] Predictive Modeling of Pharmaceutical Processes with Missing and Noisy Data
    Boukouvala, Fani
    Muzzio, Fernando J.
    Ierapetritou, Marianthi G.
    [J]. AICHE JOURNAL, 2010, 56 (11) : 2860 - 2872
  • [33] Performance Evaluation of Predictive Models for Missing Data Imputation in Weather Data
    Doreswamy
    Gad, Ibrahim
    Manjunatha, B. R.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1327 - 1334
  • [34] Efficient and alternative approaches for imputing missing data to estimate population mean
    Pandey A.K.
    Singh G.N.
    Bhattacharyya D.
    Singh P.K.
    [J]. Quality & Quantity, 2024, 58 (6) : 5883 - 5897
  • [35] Some improved and alternative imputation methods for finite population mean in presence of missing information
    Singh, Garib Nath
    Pandey, Awadhesh K.
    Sharma, Anup Kumar
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (19) : 4401 - 4427
  • [36] Estimators for the population mean in the case of missing data
    Kadilar, Cem
    Cingi, Hulya
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (14) : 2226 - 2236
  • [37] Improved Estimators of the Population Mean for Missing Data
    Diana, Giancarlo
    Perri, Pier Francesco
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (18) : 3245 - 3251
  • [38] Copula-based pairwise estimator for quantile regression with hierarchical missing data
    Verhasselt, Anneleen
    Florez, Alvaro J.
    Molenberghs, Geert
    Van Keilegom, Ingrid
    [J]. STATISTICAL MODELLING, 2025, 25 (02) : 129 - 149
  • [39] Robust estimator for estimation of population mean under PPS sampling: Application to radiation data
    El-Saeed, Ahmed R.
    Ahmad, Sohaib
    Aloraini, Badr
    [J]. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2025, 18 (02)
  • [40] From Predictive Methods to Missing Data Imputation: An Optimization Approach
    Bertsimas, Dimitris
    Pawlowski, Colin
    Zhuo, Ying Daisy
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18