Exploring hypergraphs with martingales

被引:10
作者
Bollobas, Bela [1 ,2 ]
Riordan, Oliver [3 ]
机构
[1] Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
美国国家科学基金会;
关键词
random hypergraph; phase transition; martingale; GIANT COMPONENT; ASYMPTOTIC NORMALITY; PHASE-TRANSITION; LIMIT-THEOREMS; RANDOM GRAPHS; SIZE;
D O I
10.1002/rsa.20678
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, in [Random Struct Algorithm 41 (2012), 441-450] we adapted exploration and martingale arguments of Nachmias and Peres [ALEA Lat Am J Probab Math Stat 3 (2007), 133-142], in turn based on ideas of Martin-Lof [J Appl Probab 23 (1986), 265-282], Karp [Random Struct Alg 1 (1990), 73-93] and Aldous [Ann Probab 25 (1997), 812-854], to prove asymptotic normality of the number L-1 of vertices in the largest component L1 of the random r-uniform hypergraph in the supercritical regime. In this paper we take these arguments further to prove two new results: strong tail bounds on the distribution of L-1, and joint asymptotic normality of L-1 and the number M-1 of edges of L1 in the sparsely supercritical case. These results are used in [Combin Probab Comput 25 (2016), 21-75], where we enumerate sparsely connected hypergraphs asymptotically. (c) 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 325-352, 2017
引用
收藏
页码:325 / 352
页数:28
相关论文
共 20 条
  • [1] Aldous D, 1997, ANN PROBAB, V25, P812
  • [2] [Anonymous], 1986, Probability and Measure
  • [3] [Anonymous], J LONDON MATH SOC
  • [4] [Anonymous], RANDOM STRUCT ALGORI
  • [5] Local Limit Theorems for the Giant Component of Random Hypergraphs
    Behrisch, Michael
    Coja-Oghlan, Amin
    Kang, Mihyun
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03) : 331 - 366
  • [6] The Order of the Giant Component of Random Hypergraphs
    Behrisch, Michael
    Coja-Oghlan, Amin
    Kang, Mihyun
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (02) : 149 - 184
  • [7] Large-Deviations/Thermodynamic approach to percolation on the complete graph
    Biskup, Marek
    Chayes, Lincoln
    Smith, S. A.
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (03) : 354 - 370
  • [8] Bollobas B., 2014, ARXIV14036558
  • [9] Counting Connected Hypergraphs via the Probabilistic Method
    Bollobas, Bela
    Riordan, Oliver
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (01) : 21 - 75
  • [10] Asymptotic normality of the size of the giant component in a random hypergraph
    Bollobas, Bela
    Riordan, Oliver
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 441 - 450