Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol

被引:72
|
作者
Lyu, Xiaomei [1 ]
Zhao, Guili [1 ]
Ng, Kuan Rei [1 ]
Mark, Rita [1 ]
Chen, Wei Ning [1 ]
机构
[1] Nanyang Technol Univ, Coll Engn, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
关键词
kaempferol; S; cerevisiae; coculture; surfactant; metabolic engineering; ESCHERICHIA-COLI COCULTURE; BIOSYNTHETIC PATHWAYS; AROMATIC-COMPOUNDS; CANCER PREVENTION; BACILLUS-SUBTILIS; YEAST; NARINGENIN; EXPRESSION; GENE; FLAVONOIDS;
D O I
10.1021/acs.jafc.9b01329
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Kaempferol is a polyphenolic compound with various reported health benefits and thus harbors considerable potential for food-engineering applications. In this study, a high-yield kaempferol-producing cell factory was constructed by multiple strategies, including gene screening, elimination of the phenylethanol biosynthetic branch, optimizing the core flavonoid synthetic pathway, supplementation of precursor PEP/E4P, and mitochondrial engineering of F3H and FLS. A total of 86 mg/L of kaempferol was achieved in strain YL-4, to date the highest production titer in yeast. Furthermore, a coculture system and supplementation of surfactants were investigated, to relieve the metabolic burden as well as the low solubility/possible transport limitations of flavonoids, respectively. In the coculture system, the whole pathway was divided across two strains, resulting in 50% increased cell growth. Meanwhile, supplementation of Tween 80 in our engineered strains yielded 220 mg/L of naringenin and 200 mg/L of mixed flavonoids-among the highest production titer reported via de novo production in yeast.
引用
收藏
页码:5596 / 5606
页数:11
相关论文
共 50 条
  • [1] De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces cerevisiae
    Liu, Yingjie
    Liu, Han
    Hu, Haitao
    Ng, Kuan Rei
    Yang, Ruijin
    Lyu, Xiaomei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2022, 70 (24) : 7490 - 7499
  • [2] Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone
    Xiangfeng Meng
    Hui Liu
    Wenqiang Xu
    Weixin Zhang
    Zheng Wang
    Weifeng Liu
    Microbial Cell Factories, 19
  • [3] Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone
    Meng, Xiangfeng
    Liu, Hui
    Xu, Wenqiang
    Zhang, Weixin
    Wang, Zheng
    Liu, Weifeng
    MICROBIAL CELL FACTORIES, 2020, 19 (01)
  • [4] Engineering de novo anthocyanin production in Saccharomyces cerevisiae
    Mark Levisson
    Constantinos Patinios
    Sascha Hein
    Philip A. de Groot
    Jean-Marc Daran
    Robert D. Hall
    Stefan Martens
    Jules Beekwilder
    Microbial Cell Factories, 17
  • [5] Engineering de novo anthocyanin production in Saccharomyces cerevisiae
    Levisson, Mark
    Patinios, Constantinos
    Hein, Sascha
    de Groot, Philip A.
    Daran, Jean-Marc
    Hall, Robert D.
    Martens, Stefan
    Beekwilder, Jules
    MICROBIAL CELL FACTORIES, 2018, 17
  • [6] Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives
    Milne, N.
    Thomsen, P.
    Knudsen, N. Molgaard
    Rubaszka, P.
    Kristensen, M.
    Borodina, I
    METABOLIC ENGINEERING, 2020, 60 (60) : 25 - 36
  • [7] Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives
    Milne, Nicholas
    Saez-Saez, Javier
    Nielsen, Annette Munch
    Dyekjaer, Jane Dannow
    Rago, Daniela
    Kristensen, Mette
    Wulff, Tune
    Borodina, Irina
    CHEMISTRYOPEN, 2023, 12 (04):
  • [8] Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties
    Eichenberger, Michael
    Lehka, Beata Joanna
    Folly, Christophe
    Fischer, David
    Martens, Stefan
    Simon, Ernesto
    Naesby, Michael
    METABOLIC ENGINEERING, 2017, 39 : 80 - 89
  • [9] Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae
    Lijin Duan
    Wentao Ding
    Xiaonan Liu
    Xiaozhi Cheng
    Jing Cai
    Erbing Hua
    Huifeng Jiang
    Microbial Cell Factories, 16
  • [10] Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae
    Duan, Lijin
    Ding, Wentao
    Liu, Xiaonan
    Cheng, Xiaozhi
    Cai, Jing
    Hua, Erbing
    Jiang, Huifeng
    MICROBIAL CELL FACTORIES, 2017, 16