ON TORAL EIGENFUNCTIONS AND THE RANDOM WAVE MODEL

被引:24
作者
Bourgain, Jean [1 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
POINTS;
D O I
10.1007/s11856-014-1037-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this Note is to provide a deterministic implementation of the random wave model for the number of nodal domains in the context of the two-dimensional torus. The approach is based on recent work due to Nazarov and Sodin and arithmetical properties of lattice points on circles.
引用
收藏
页码:611 / 630
页数:20
相关论文
共 14 条
[1]  
[Anonymous], LECT RANDOM NODAL PO
[2]   Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature [J].
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13) :3025-3038
[3]   Random wavefunctions and percolation [J].
Bogomolny, E. ;
Schmit, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :14033-14043
[4]   Percolation model or nodal domains of chaotic wave functions [J].
Bogomolny, E ;
Schmit, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[5]  
Bombieri E., INT MATH RE IN PRESS
[6]  
Bourgain J., INT MATH RE IN PRESS
[7]   On the angular distribution of Gaussian integers with fixed norm [J].
Erdos, P ;
Hall, RR .
DISCRETE MATHEMATICS, 1999, 200 (1-3) :87-94
[8]   Linear equations in variables which lie in a multiplicative group [J].
Evertse, JH ;
Schlickewei, HP ;
Schmidt, WM .
ANNALS OF MATHEMATICS, 2002, 155 (03) :807-836
[9]   Lattice points on circles and discrete velocity models for the Boltzmann equation [J].
Fainsilber, L ;
Kurlberg, P ;
Wennberg, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (06) :1903-1922
[10]   Nodal Domains of Maass Forms I [J].
Ghosh, Amit ;
Reznikov, Andre ;
Sarnak, Peter .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (05) :1515-1568