Multi-bump solutions for a Kirchhoff-type problem

被引:37
作者
Alves, Claudianor O. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Kirchhoff problem; multi-bump solution; variational methods; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; ELLIPTIC EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1515/anona-2015-0101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the Kirchhoff problem {M(integral(R3)vertical bar del u vertical bar(2) dx + integral(R3) (lambda a(x) + 1)u(2) dx)(-Delta u + (lambda a(x) + 1)u) = f(u) in R-3, u is an element of H-1(R-3). Assuming that the nonnegative function a(x) has a potential well with int(a(-1) ({0})) consisting of k disjoint components Omega(1), Omega(2), ... , Omega(k) and the nonlinearity f(t) has a subcritical growth, we are able to establish the existence of positive multi-bump solutions by using variational methods.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
[41]   Least energy nodal solutions for Kirchhoff-type Laplacian problems [J].
Cheng, Bitao ;
Chen, Jianhua ;
Zhang, Binlin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) :3827-3849
[42]   INFINITELY MANY SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS DEPENDING ON A PARAMETER [J].
Sun, Juntao ;
Ji, Yongbao ;
Wu, Tsung-Fang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[43]   Ground State Solutions for Kirchhoff-type Problems with Critical Nonlinearity [J].
Ye, Yiwei .
TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01) :63-79
[44]   Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. .
MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01) :35-60
[45]   Multi-bump Solutions for a Semilinear Schrodinger Equation [J].
Lin, Lishan ;
Liu, Zhaoli ;
Chen, Shaowei .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1659-1689
[46]   Multi-Bump Solutions for Nonlinear Choquard Equation with Potential Wells and a General Nonlinearity [J].
Guo, Lun ;
Hu, Tingxi .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) :316-340
[47]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[48]   Multi-bump solutions for the nonlinear magnetic Schrodinger equation with exponential critical growth in R2 [J].
Ji, Chao ;
Radulescu, Vicentiu D. .
MANUSCRIPTA MATHEMATICA, 2021, 164 (3-4) :509-542
[49]   Multi-bump solutions and multi-tower solutions for equations on RN [J].
Lin, Lishan ;
Liu, Zhaoli .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) :485-505
[50]   Existence and concentration of solutions for a Kirchhoff-type problem with sublinear perturbation and steep potential well [J].
He, Shuwen ;
Wen, Xiaobo .
AIMS MATHEMATICS, 2023, 8 (03) :6432-6446