Multi-bump solutions for a Kirchhoff-type problem

被引:37
作者
Alves, Claudianor O. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Kirchhoff problem; multi-bump solution; variational methods; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; ELLIPTIC EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1515/anona-2015-0101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the Kirchhoff problem {M(integral(R3)vertical bar del u vertical bar(2) dx + integral(R3) (lambda a(x) + 1)u(2) dx)(-Delta u + (lambda a(x) + 1)u) = f(u) in R-3, u is an element of H-1(R-3). Assuming that the nonnegative function a(x) has a potential well with int(a(-1) ({0})) consisting of k disjoint components Omega(1), Omega(2), ... , Omega(k) and the nonlinearity f(t) has a subcritical growth, we are able to establish the existence of positive multi-bump solutions by using variational methods.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
[31]   Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem [J].
Zhang, Jian ;
Zou, Wenming .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[32]   Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains [J].
Shuai, Wei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) :1256-1274
[33]   Existence of solutions for a class of Kirchhoff-type equations with indefinite potential [J].
Zhou, Jian ;
Wu, Yunshun .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[34]   Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian [J].
Kang, Danyang ;
Liu, Cuiling ;
Zhang, Xingyong .
MATHEMATICS, 2020, 8 (01)
[35]   On the eigenvalue problem for a class of Kirchhoff-type equations [J].
Mende, Osvaldo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
[36]   Two weak solutions for some Kirchhoff-type problem with Neumann boundary condition [J].
Chaharlang, Moloud Makvand ;
Razani, Abdolrahman .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) :429-438
[37]   Multiple solutions for Kirchhoff-type equations in RN [J].
Ye, Yiwei ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
[38]   On ground states for the Kirchhoff-type problem with a general critical nonlinearity [J].
Liu, Zhisu ;
Guo, Shangjiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) :267-287
[39]   NEW TYPE OF MULTI-BUMP SOLUTIONS FOR SCHRODINGER-POISSON SYSTEMS [J].
Wang, Tao ;
Tian, Xiaoyu ;
He, Wenling .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (72) :1-14
[40]   A fractional Kirchhoff-type problem in RN without the (AR) condition [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Yang, Miaomiao .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (11) :1481-1493