Multi-bump solutions for a Kirchhoff-type problem

被引:35
作者
Alves, Claudianor O. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Kirchhoff problem; multi-bump solution; variational methods; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; ELLIPTIC EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1515/anona-2015-0101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the Kirchhoff problem {M(integral(R3)vertical bar del u vertical bar(2) dx + integral(R3) (lambda a(x) + 1)u(2) dx)(-Delta u + (lambda a(x) + 1)u) = f(u) in R-3, u is an element of H-1(R-3). Assuming that the nonnegative function a(x) has a potential well with int(a(-1) ({0})) consisting of k disjoint components Omega(1), Omega(2), ... , Omega(k) and the nonlinearity f(t) has a subcritical growth, we are able to establish the existence of positive multi-bump solutions by using variational methods.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [21] Local uniqueness of multi-bump solutions for singularly perturbed Kirchhoff problems
    Yu, Mingzhu
    Shi, Hongxia
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [22] Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well
    Ji, Chao
    Radulescu, Vicentiu D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 306 : 251 - 279
  • [23] On a fractional degenerate Kirchhoff-type problem
    Bisci, Giovanni Molica
    Vilasi, Luca
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [24] Local uniqueness for the multi-bump solutions to the problem of Ambrosetti-Prodi type
    Chen, Haixia
    Chen, Mengyao
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [25] MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEMS IN RN
    Alves, Claudianor O.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (02) : 231 - 250
  • [26] Solutions for critical Kirchhoff-type problems with near resonance
    Lei, Chunyu
    Lei, Yutian
    Zhang, Binlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 513 (01)
  • [27] Multi-bump Solutions for the Quasilinear Choquard Equation in RN
    Shi, Zhiheng
    Huo, Yuanyuan
    Liang, Sihua
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1357 - 1383
  • [28] Multi-bump solutions for a class of quasilinear problems involving variable exponents
    Alves, Claudianor O.
    Ferreira, Marcelo C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1563 - 1593
  • [29] Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem
    Zhang, Jian
    Zou, Wenming
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [30] Infinitely many solutions for a Kirchhoff-type problem with non-standard growth and indefinite weight
    Shen, Zifei
    Qian, Chenyin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (02): : 399 - 415