Multi-bump solutions for a Kirchhoff-type problem

被引:37
作者
Alves, Claudianor O. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, Para, Brazil
关键词
Kirchhoff problem; multi-bump solution; variational methods; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; ELLIPTIC EQUATION; EXISTENCE; MULTIPLICITY;
D O I
10.1515/anona-2015-0101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the Kirchhoff problem {M(integral(R3)vertical bar del u vertical bar(2) dx + integral(R3) (lambda a(x) + 1)u(2) dx)(-Delta u + (lambda a(x) + 1)u) = f(u) in R-3, u is an element of H-1(R-3). Assuming that the nonnegative function a(x) has a potential well with int(a(-1) ({0})) consisting of k disjoint components Omega(1), Omega(2), ... , Omega(k) and the nonlinearity f(t) has a subcritical growth, we are able to establish the existence of positive multi-bump solutions by using variational methods.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 37 条
[1]  
Alves C. O., 2001, Commun. Appl. Nonlinear Anal., V8, P43
[2]  
Alves C. O., 2015, PREPRINT
[3]  
Alves CO, 2006, ADV NONLINEAR STUD, V6, P491
[4]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[5]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[6]  
[Anonymous], 1883, VORLESUNGEN MATH PHY
[7]  
Azzollini A, 2012, DIFFER INTEGRAL EQU, V25, P543
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   On a Schrodinger-Kirchhoff-type equation involving the p(x)-Laplacian [J].
Cammaroto, F. ;
Vilasi, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 81 :42-53
[10]   Multiple solutions for p-Kirchhoff equations in RN [J].
Chen, Caisheng ;
Song, Hongxue ;
Xiu, Zhonghu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :146-156