Infiltration of Ce0.8Gd0.2O1.9 nanoparticles on Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electroreduction in solid oxide electrolysis cell

被引:109
作者
Lv, Houfu [1 ,2 ]
Zhou, Yingjie [1 ]
Zhang, Xiaomin [1 ]
Song, Yuefeng [1 ,2 ]
Liu, Qingxue [1 ,2 ]
Wang, Guoxiong [1 ]
Bao, Xinhe [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2019年 / 35卷
基金
中国国家自然科学基金;
关键词
Electrochemical carbon dioxide reduction reaction; Solid oxide electrolysis cell; Double perovskite; Infiltration; PEROVSKITE-TYPE OXIDES; ELECTROCHEMICAL PERFORMANCE; COMPOSITE CATHODE; FUEL ELECTRODE; OXYGEN; REDUCTION; STEAM; CONDUCTOR; RECOVERY; ANODES;
D O I
10.1016/j.jechem.2018.11.002
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Solid oxide electrolysis cell (SOEC) can electrochemically convert CO2 to CO at the gas-solid interface with a high current density and Faradaic efficiency, which has attracted increasing attentions in recent years. Exploring efficient catalyst for electrochemical CO2 reduction reaction (CO2RR) at the cathode is a grand challenge for the research and development of SOEC. Sr2Fe1.5Mo0.5O6-delta (SFM) is one kind of promising cathode materials for SOEC, but suffers from insufficient activity for CO2RR. Herein, Gd0.2Ce0.8O1.9 (GDC) nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO2RR performance in SOEC. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A cm(-2) at 1.6V and 800 degrees C, which is much higher than that over the SFM cathode (0.283 A cm(-2)). Temperature-programmed desorption of CO2 measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface active sites and three phase boundaries (TPBs), which are beneficial for CO2 adsorption and subsequent conversion. Electrochemical impedance spectroscopy results indicate that the polarization resistance of 12.8 wt% GDC-SFM cathode was obviously decreased from 0.46 to 0.30 Omega cm(2) after the infiltration of GDC nanoparticles. (C) 2018 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [31] Electrochemical and thermal properties of SmBa0.5Sr0.5CO2O5+δ cathode impregnated with Ce0.8Sm0.2O1.9 nanoparticles for intermediate-temperature solid oxide fuel cells
    Subardi, Adi
    Fu, Yen-Pei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24338 - 24346
  • [32] One Step Synthesis of Sr2Fe1.3Co0.2Mo0.5O6-δ-Gd0.1Ce0.9O2-δ for Symmetrical Solid Oxide Fuel Cells
    Yang, Yanru
    Li, Shishuai
    Yang, Zhibin
    Chen, Yu
    Zhang, Panpan
    Wang, Yuhao
    Chen, Fanglin
    Peng, Suping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
  • [33] Co-improving the electrocatalytic performance and H2S tolerance of a Sr2Fe1.5Mo0.5O6-δ based anode for solid oxide fuel cells
    Xu, Chunming
    Zhang, Lihong
    Sun, Wang
    Ren, Rongzheng
    Yang, Xiaoxia
    Ma, Minjian
    Qiao, Jinshuo
    Wang, Zhenhua
    Zhen, Shuying
    Sun, Kening
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (30) : 16280 - 16289
  • [34] On the composition of Sr2Fe1.5Mo0.5O6-8-Sm0.2Ce0.8O2-8 composite as fuel electrodes for hydrogen reversible solid oxide cells
    Li, Hao-Yang
    Kamlungsua, Kittiwat
    Ng, Kelvin
    Shin, Ji-Yoon
    Su, Pei-Chen
    FUEL, 2023, 348
  • [35] Nanofiber Sr2Fe1.5Mo0.5O6-δ Electrodes Fabricated by the Electrospinning Method for Solid-Oxide Cells
    Zhang, Bo
    Leng, Zhizhong
    Ling, Yihan
    Bai, Hu
    Li, Sha
    Zhou, Juan
    Wang, Shaorong
    CRYSTALS, 2022, 12 (11)
  • [36] Direct Electrolysis of CO2 in Symmetrical Solid Oxide Electrolysis Cell Based on La0.6Sr0.4Fe0.8Ni0.2O3-δ Electrode
    Tian, Yunfeng
    Zheng, Haoyu
    Zhang, Lingling
    Chi, Bo
    Pu, Jian
    Li, Jian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : F17 - F23
  • [37] Interface engineering of La0.6Sr0.4Co0.2Fe0.8O3-δ/ Gd0.1Ce0.9O1.95 heterostructure oxygen electrode for solid oxide electrolysis cells with enhanced CO2 electrolysis performance
    Yang, Caichen
    Wang, Ziling
    Tan, Yuan
    Pu, Jian
    Chi, Bo
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [38] One-step synthesis of high performance Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells using a self-combustion technique
    Dai, Ningning
    Wang, Zhenhua
    Lou, Zhongliang
    Yan, Yiming
    Qiao, Jinshuo
    Peng, Jun
    Sun, Kening
    JOURNAL OF POWER SOURCES, 2012, 217 : 519 - 523
  • [39] Performance of the Composite Cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2-δ for Medium-low Temperature Solid Oxide Fuel Cell
    Luo Ling-Hong
    Hu Jia-Xing
    Cheng Liang
    Xu Xu
    Wu Ye-Fan
    Lin You-Chen
    JOURNAL OF INORGANIC MATERIALS, 2018, 33 (04) : 441 - 446
  • [40] La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells
    Zheng, Haoyu
    Tian, Yunfeng
    Zhang, Lingling
    Chi, Bo
    Pu, Jian
    Jian, Li
    JOURNAL OF POWER SOURCES, 2018, 383 : 93 - 101