Probabilities of failure for quantum error correction

被引:3
作者
Scott, A. J. [1 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
关键词
quantum error correction; quantum information;
D O I
10.1007/s11128-005-0002-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the performance of a quantum error-correcting code when pushed beyond its intended capacity to protect information against errors, presenting formulae for the probability of failure when the errors affect more audits than that specified by the code's minimum distance. Such fomulae provide a means to rank different codes of the same minimum distance. We consider both error detection and error correction, treating explicit examples in the case of stabilizer codes constructed from qubits and encoding a single qubit.
引用
收藏
页码:399 / 431
页数:33
相关论文
共 17 条
[1]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[2]   Quantum error detection I: Statement of the problem [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :778-788
[3]  
BACHOC C, 2000, J THEOR NOMBR BORDX, V12
[4]  
BACHOC CH, 2001, Electron. Notes Discrete Math., V6
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]  
GABORIT P, 2001, DIMACS SERIES DISCRE, V56
[7]  
GOTTESMAN D, 1997, QUANTPH9705052
[8]   On optimal quantum codes [J].
Grassl, M ;
Beth, T ;
Rötteler, M .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) :55-64
[9]  
Grassl M., 2002, MATH QUANTUM COMPUTA
[10]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911