MetaboAnalyst: a web server for metabolomic data analysis and interpretation

被引:1585
作者
Xia, Jianguo [1 ]
Psychogios, Nick [2 ]
Young, Nelson [2 ]
Wishart, David S. [1 ,2 ,3 ]
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E8, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[3] Natl Inst Nanotechnol NINT, Natl Res Council, Edmonton, AB T6G 2E8, Canada
关键词
BIOCONDUCTOR; IDENTIFICATION;
D O I
10.1093/nar/gkp356
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics is a newly emerging field of 'omics' research that is concerned with characterizing large numbers of metabolites using NMR, chromatography and mass spectrometry. It is frequently used in biomarker identification and the metabolic profiling of cells, tissues or organisms. The data processing challenges in metabolomics are quite unique and often require specialized (or expensive) data analysis software and a detailed knowledge of cheminformatics, bioinformatics and statistics. In an effort to simplify metabolomic data analysis while at the same time improving user accessibility, we have developed a freely accessible, easy-to-use web server for metabolomic data analysis called MetaboAnalyst. Fundamentally, MetaboAnalyst is a web-based metabolomic data processing tool not unlike many of today's web-based microarray analysis packages. It accepts a variety of input data (NMR peak lists, binned spectra, MS peak lists, compound/concentration data) in a wide variety of formats. It also offers a number of options for metabolomic data processing, data normalization, multivariate statistical analysis, graphing, metabolite identification and pathway mapping. In particular, MetaboAnalyst supports such techniques as: fold change analysis, t-tests, PCA, PLS-DA, hierarchical clustering and a number of more sophisticated statistical or machine learning methods. It also employs a large library of reference spectra to facilitate compound identification from most kinds of input spectra. MetaboAnalyst guides users through a step-by-step analysis pipeline using a variety of menus, information hyperlinks and check boxes. Upon completion, the server generates a detailed report describing each method used, embedded with graphical and tabular outputs. MetaboAnalyst is capable of handling most kinds of metabolomic data and was designed to perform most of the common kinds of metabolomic data analyses. MetaboAnalyst is accessible at http://www.metaboanalyst.ca
引用
收藏
页码:W652 / W660
页数:9
相关论文
共 25 条
  • [1] Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
    Bijlsma, S
    Bobeldijk, L
    Verheij, ER
    Ramaker, R
    Kochhar, S
    Macdonald, IA
    van Ommen, B
    Smilde, AK
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (02) : 567 - 574
  • [2] Potential of metabolomics as a functional genomics tool
    Bino, RJ
    Hall, RD
    Fiehn, O
    Kopka, J
    Saito, K
    Draper, J
    Nikolau, BJ
    Mendes, P
    Roessner-Tunali, U
    Beale, MH
    Trethewey, RN
    Lange, BM
    Wurtele, ES
    Sumner, LW
    [J]. TRENDS IN PLANT SCIENCE, 2004, 9 (09) : 418 - 425
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [5] Metabolite identification via the Madison Metabolomics Consortium Database
    Cui, Qiu
    Lewis, Ian A.
    Hegeman, Adrian D.
    Anderson, Mark E.
    Li, Jing
    Schulte, Christopher F.
    Westler, William M.
    Eghbalnia, Hamid R.
    Sussman, Michael R.
    Markley, John L.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (02) : 162 - 164
  • [6] Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures.: Application in 1H NMR metabonomics
    Dieterle, Frank
    Ross, Alfred
    Schlotterbeck, Gotz
    Senn, Hans
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (13) : 4281 - 4290
  • [7] Empirical Bayes analysis of a microarray experiment
    Efron, B
    Tibshirani, R
    Storey, JD
    Tusher, V
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1151 - 1160
  • [8] Metabolomics - the link between genotypes and phenotypes
    Fiehn, O
    [J]. PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) : 155 - 171
  • [9] Bioconductor: open software development for computational biology and bioinformatics
    Gentleman, RC
    Carey, VJ
    Bates, DM
    Bolstad, B
    Dettling, M
    Dudoit, S
    Ellis, B
    Gautier, L
    Ge, YC
    Gentry, J
    Hornik, K
    Hothorn, T
    Huber, W
    Iacus, S
    Irizarry, R
    Leisch, F
    Li, C
    Maechler, M
    Rossini, AJ
    Sawitzki, G
    Smith, C
    Smyth, G
    Tierney, L
    Yang, JYH
    Zhang, JH
    [J]. GENOME BIOLOGY, 2004, 5 (10)
  • [10] GEPAS:: a web-based resource for microarray gene expression data analysis
    Herrero, J
    Al-Shahrour, F
    Díaz-Uriarte, R
    Mateos, A
    Vaquerizas, JM
    Santoyo, J
    Dopazo, J
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (13) : 3461 - 3467