Investigating the Goos-Hanchen shift for a fractional dual planar interface

被引:2
作者
Mehboob, Aniqa [1 ]
Syed, Aqeel A. [1 ]
Naqvi, Qaisar Abbas [1 ]
机构
[1] Quaid I Azam Univ, Dept Elect, Islamabad 45320, Pakistan
来源
OPTIK | 2019年 / 185卷
关键词
Goos-Hanchen shift; Fractional dual solutions; Fractional curloperator; Fractional calculus; Planar interface; CURL OPERATOR; CALCULUS;
D O I
10.1016/j.ijleo.2019.03.100
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Purpose of the paper is to determine the Goos-Hanchen (GH) shift for fractional dual fields related to a planar interface. The fractional dual fields are considered as intermediate step between the two given fields; which are connected through the curl operator. In our discussion, TE and TM fields are the two given fields. By fractionalizing the curl operator, one can get the fractional dual fields. It is investigated how variation of order of the curl operator varies amplitude, phase and GH-shift for the fractional dual fields.
引用
收藏
页码:910 / 916
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1999, MATH SCI ENG
[2]  
[Anonymous], 2012, Advanced Engineering Electromagnetics
[3]  
[Anonymous], 1974, FRACTIONAL CALCULUS
[4]   Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric [J].
Balankin, Alexander S. ;
Bory-Reyes, Juan ;
Shapiro, Michael .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 :345-359
[5]  
Baleanu D., 2011, FRACTIONAL DYNAMICS
[6]  
Berman P. R., 2012, SCHOLARPEDIA, V7, P11584
[7]  
Engheta N, 1998, MICROW OPT TECHN LET, V17, P86, DOI 10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO
[8]  
2-E
[9]  
ENGHETA N, 1995, J ELECTROMAGNET WAVE, V9, P1179
[10]  
Engheta N, 1999, MICROW OPT TECHN LET, V21, P338, DOI 10.1002/(SICI)1098-2760(19990605)21:5<338::AID-MOP10>3.0.CO