Simplified Interval Type-2 Fuzzy Neural Networks

被引:120
作者
Lin, Yang-Yin [1 ]
Liao, Shih-Hui [1 ]
Chang, Jyh-Yeong [1 ]
Lin, Chin-Teng [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Inst Elect Control Engn, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Brain Res Ctr, Hsinchu 30010, Taiwan
关键词
Fuzzy identification; on-line fuzzy clustering; type-2 fuzzy neural networks (FNNs); type-2 fuzzy systems; LOGIC SYSTEMS; IDENTIFICATION; SETS; OPTIMIZATION; UNCERTAINTY; PREDICTION; MODELS;
D O I
10.1109/TNNLS.2013.2284603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a self-evolving interval type-2 fuzzy neural network (FNN) for various applications. As type-1 fuzzy systems cannot effectively handle uncertainties in information within the knowledge base, we propose a simple interval type-2 FNN, which uses interval type-2 fuzzy sets in the premise and the Takagi-Sugeno-Kang (TSK) type in the consequent of the fuzzy rule. The TSK-type consequent of fuzzy rule is a linear combination of exogenous input variables. Given an initially empty the rule-base, all rules are generated with on-line type-2 fuzzy clustering. Instead of the time-consuming K-M iterative procedure, the design factors q(l) and q(r) are learned to adaptively adjust the upper and lower positions on the left and right limit outputs, using the parameter update rule based on a gradient descent algorithm. Simulation results demonstrate that our approach yields fewer test errors and less computational complexity than other type-2 FNNs.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 54 条
  • [1] Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants
    Abiyev, Rahib Hidayat
    Kaynak, Okyay
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4147 - 4159
  • [2] [Anonymous], 2018, TIME SERIES PREDICTI
  • [3] On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems
    Biglarbegian, Mohammad
    Melek, William W.
    Mendel, Jerry M.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (03): : 798 - 818
  • [4] Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review
    Castillo, Oscar
    Melin, Patricia
    [J]. INFORMATION SCIENCES, 2012, 205 : 1 - 19
  • [5] Castro JR, 2010, STUD COMPUT INTELL, V318, P269, DOI 10.1007/978-3-642-15534-5_17
  • [6] A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2175 - 2193
  • [7] Chang JY, 2011, IEEE INT CONF FUZZY, P939
  • [8] General fuzzy min-max neural network for clustering and classification
    Gabrys, B
    Bargiela, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 769 - 783
  • [9] A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots
    Hagras, HA
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (04) : 524 - 539
  • [10] Comments on "Dynamical optimal training for interval type-2 fuzzy neural network (THNN)"
    Hagras, Ham
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (05): : 1206 - 1209