Dissipative lattice model with exact traveling discrete kink-soliton solutions:: Discrete breather generation and reaction diffusion regime

被引:30
作者
Comte, JC
Marquié, P
Remoissenet, M
机构
[1] Univ Bourgogne, Lab Elect Informat & Image LE21, F-21078 Dijon, France
[2] Univ Bourgogne, Phys Lab, Fac Sci Mirande, F-21011 Dijon, France
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.7484
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts solutions. In the nondissipative or conservative regime, our numerical simulations show that narrow kinks can propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape, discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic. [S1063-651X(99)16811-9].
引用
收藏
页码:7484 / 7489
页数:6
相关论文
共 16 条
[1]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[2]   THEORY OF INTRINSIC-COERCIVITY IN NARROW MAGNETIC DOMAIN-WALL MATERIALS [J].
BISHOP, AR ;
LEWIS, WF .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (18) :3811-3825
[3]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[4]   KINKS IN THE KLEIN-GORDON MODEL WITH ANHARMONIC INTERATOMIC INTERACTIONS - A VARIATIONAL APPROACH [J].
BRAUN, OM ;
FEI, Z ;
KIVSHAR, YS ;
VAZQUEZ, L .
PHYSICS LETTERS A, 1991, 157 (4-5) :241-245
[5]   Exact travelling wave solutions of an ''integrable'' discrete reaction-diffusion equation [J].
Bressloff, PC ;
Rowlands, G .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 106 (3-4) :255-269
[6]   PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS [J].
ERNEUX, T ;
NICOLIS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :237-244
[7]   Moving lattice kinks and pulses: An inverse method [J].
Flach, S ;
Zolotaryuk, Y ;
Kladko, K .
PHYSICAL REVIEW E, 1999, 59 (05) :6105-6115
[8]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[9]   PINNING-FREE SOLITON LATTICES AND BIFURCATION IN A DISCRETE DOUBLE-WELL MODEL - EXACT RESULTS [J].
JENSEN, MH ;
BAK, P ;
POPIELEWICZ, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4369-4375