Spinning solitons of a modified nonlinear Schrodinger equation

被引:10
作者
Brihaye, Y [1 ]
Hartmann, B
Zakrzewski, WJ
机构
[1] Univ Mons, Fac Sci, B-7000 Mons, Belgium
[2] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 08期
关键词
D O I
10.1103/PhysRevD.69.087701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study soliton solutions of a modified nonlinear Schrodinger (MNLS) equation. Using an ansatz for the time and azimuthal angle dependence previously considered in the studies of the spinning Q balls, we construct multinode solutions of the MNLS equation as well as spinning generalizations.
引用
收藏
页数:4
相关论文
共 11 条
[1]   Spontaneously localized electron states in a discrete anisotropic two-dimensional lattice [J].
Brizhik, L ;
Piette, B ;
Zakrzewski, WJ .
PHYSICA D, 2000, 146 (1-4) :275-288
[2]   Static solutions of a D-dimensional modified nonlinear Schrodinger equation [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 2003, 16 (04) :1481-1497
[3]   Electron self-trapping in a discrete two-dimensional lattice [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, W .
PHYSICA D, 2001, 159 (1-2) :71-90
[4]  
BRIZHIK L, 2001, UKR FIZ ZH, V46, P503
[5]   Q-BALLS [J].
COLEMAN, S .
NUCLEAR PHYSICS B, 1985, 262 (02) :263-283
[6]   Electrons on hexagonal lattices and applications to nanotubes [J].
Hartmann, B ;
Zakrzewski, WJ .
PHYSICAL REVIEW B, 2003, 68 (18)
[7]   NONTOPOLOGICAL SOLITONS [J].
LEE, TD ;
PANG, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 221 (5-6) :251-350
[8]  
Rajaraman R., 1982, SOLITONS INSTANTONS
[9]  
Schunck F. E., 1996, Relativity and scientific computing. Computer algebra, numerics, visualization, P138
[10]   Existence of spinning solitons in gauge field theory -: art. no. 105006 [J].
Volkov, MS ;
Wöhnert, E .
PHYSICAL REVIEW D, 2003, 67 (10)