HYPERELLIPTIC SURFACES WITH K2 < 4χ-6

被引:0
作者
Rito, Carlos [1 ]
Marti Sanchez, Maria [2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Matemat, P-5001801 Vila Real, Portugal
[2] Nebrija Univ, Madrid 28040, Spain
关键词
GENERAL TYPE; ALGEBRAIC-SURFACES; BICANONICAL MAP;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a smooth minimal surface of general type with a (rational) pencil of hyperelliptic curves of minimal genus g. We prove that if K-S(2) < 4 chi (O-S)-6, then g is bounded. The surface S is determined by the branch locus of the covering S -> S/i, where i is the hyperelliptic involution of S. For K-S(2) < 3 chi (O-S)-6, we show how to determine the possibilities for this branch curve. As an application, given g > 4 and K-S(2) - 3 chi (O-S) < -6, we compute the maximum value for chi(O-S). This list of possibilities is sharp.
引用
收藏
页码:929 / 945
页数:17
相关论文
共 9 条
[1]   ALGEBRAIC-SURFACES OF GENERAL TYPE WITH C1(2)=3PG-7 [J].
ASHIKAGA, T ;
KONNO, K .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (04) :517-536
[2]  
Barth BHPV Wolf P., 2004, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, V4, DOI DOI 10.1007/978-3-642-57739-0
[3]   The classification of surfaces of general type with nonbirational bicanonical map [J].
Borrelli, Giuseppe .
JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (04) :625-669
[4]   On surfaces with pg=q=2 and non-birational bicanonical maps [J].
Ciliberto, C ;
Lopes, MM .
ADVANCES IN GEOMETRY, 2002, 2 (03) :281-300
[5]   ALGEBRAIC-SURFACES OF GENERAL TYPE WITH C1(2) = 3PG-6 [J].
KONNO, K .
MATHEMATISCHE ANNALEN, 1991, 290 (01) :77-107
[6]   Involutions on surfaces with pg = q=1 [J].
Rito, Carlos .
COLLECTANEA MATHEMATICA, 2010, 61 (01) :81-106
[7]  
XIAO G, 1987, MATH ANN, V276, P449
[8]   HYPERELLIPTIC SURFACES OF GENERAL TYPE WITH K2 LESS-THAN 4X [J].
XIAO, G .
MANUSCRIPTA MATHEMATICA, 1987, 57 (02) :125-148
[9]   DEGREE OF THE BICANONICAL MAP OF A SURFACE OF GENERAL TYPE [J].
XIAO, G .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (05) :713-736