On posterior consistency of tail index for Bayesian kernel mixture models

被引:3
作者
Li, Cheng [1 ]
Lin, Lizhen [2 ]
Dunson, David B. [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
heavy tailed distribution; kernel mixture model; normalized random measures; posterior consistency; tail index; DENSITY-ESTIMATION; DIRICHLET MIXTURES; CONVERGENCE-RATES; INFERENCE; PARAMETERS; EXPONENT; BOUNDS;
D O I
10.3150/18-BEJ1043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic theory of tail index estimation has been studied extensively in the frequentist literature on extreme values, but rarely in the Bayesian context. We investigate whether popular Bayesian kernel mixture models are able to support heavy tailed distributions and consistently estimate the tail index. We show that posterior inconsistency in tail index is surprisingly common for both parametric and nonparametric mixture models. We then present a set of sufficient conditions under which posterior consistency in tail index can be achieved, and verify these conditions for Pareto mixture models under general mixing priors.
引用
收藏
页码:1999 / 2028
页数:30
相关论文
共 50 条
[41]   Bayesian consistency for regression models under a supremum distance [J].
Xiang, Fei ;
Walker, Stephen G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (03) :468-478
[42]   Bayesian Identification and Estimation of Growth Mixture Models [J].
Xiao, Xingyao ;
Rabe-Hesketh, Sophia ;
Skrondal, Anders .
PSYCHOMETRIKA, 2025,
[43]   POSTERIOR CONTRACTION IN SPARSE BAYESIAN FACTOR MODELS FOR MASSIVE COVARIANCE MATRICES [J].
Pati, Debdeep ;
Bhattacharya, Anirban ;
Pillai, Natesh S. ;
Dunson, David .
ANNALS OF STATISTICS, 2014, 42 (03) :1102-1130
[44]   BayesMix: Bayesian Mixture Models in C plus [J].
Beraha, Mario ;
Gianella, Matteo ;
Guindani, Bruno ;
Guglielmi, Alessandra .
JOURNAL OF STATISTICAL SOFTWARE, 2025, 112 (09)
[45]   Kullback Leibler property of kernel mixture priors in Bayesian density estimation [J].
Wu, Yuefeng ;
Ghosal, Subhashis .
ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 :298-331
[46]   Estimating the conditional tail index by integrating a kernel conditional quantile estimator [J].
Gardes, L. ;
Guillou, A. ;
Schorgen, A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) :1586-1598
[47]   Constraining kernel estimators in semiparametric copula mixture models [J].
Mazo, Gildas ;
Averyanov, Yaroslav .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 138 :170-189
[48]   Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method [J].
Koskela, Jere ;
Jenkins, Paul A. ;
Spano, Dario .
BERNOULLI, 2018, 24 (03) :2122-2153
[49]   Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density [J].
Sriram, Karthik ;
Ramamoorthi, R. V. ;
Ghosh, Pulak .
BAYESIAN ANALYSIS, 2013, 8 (02) :479-504
[50]   Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models [J].
Moss, Daniel ;
Rousseau, Judith .
ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01) :1815-1886