On posterior consistency of tail index for Bayesian kernel mixture models

被引:3
作者
Li, Cheng [1 ]
Lin, Lizhen [2 ]
Dunson, David B. [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
heavy tailed distribution; kernel mixture model; normalized random measures; posterior consistency; tail index; DENSITY-ESTIMATION; DIRICHLET MIXTURES; CONVERGENCE-RATES; INFERENCE; PARAMETERS; EXPONENT; BOUNDS;
D O I
10.3150/18-BEJ1043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic theory of tail index estimation has been studied extensively in the frequentist literature on extreme values, but rarely in the Bayesian context. We investigate whether popular Bayesian kernel mixture models are able to support heavy tailed distributions and consistently estimate the tail index. We show that posterior inconsistency in tail index is surprisingly common for both parametric and nonparametric mixture models. We then present a set of sufficient conditions under which posterior consistency in tail index can be achieved, and verify these conditions for Pareto mixture models under general mixing priors.
引用
收藏
页码:1999 / 2028
页数:30
相关论文
共 50 条
[31]   Kernel mixture model for probability density estimation in Bayesian classifiers [J].
Zhang, Wenyu ;
Zhang, Zhenjiang ;
Chao, Han-Chieh ;
Tseng, Fan-Hsun .
DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (03) :675-707
[32]   Extreme quantiles and tail index of a distribution based on kernel estimator [J].
Bahraoui, Zuhair ;
Bahraoui, M. Amin .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (01) :134-145
[33]   IS INFINITY THAT FAR? A BAYESIAN NONPARAMETRIC PERSPECTIVE OF FINITE MIXTURE MODELS [J].
Argiento, Raffaele ;
De Iorio, Maria .
ANNALS OF STATISTICS, 2022, 50 (05) :2641-2663
[34]   Fast Search and Estimation of Bayesian Nonparametric Mixture Models Using a Classification Annealing EM Algorithm [J].
Karabatsos, George .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) :236-247
[35]   Bayesian estimation of stochastic tail index from high-frequency financial data [J].
Dogan, Osman ;
Taspinar, Suleyman ;
Bera, Anil K. .
EMPIRICAL ECONOMICS, 2021, 61 (05) :2685-2711
[36]   Consistency of Posterior Distributions for Heteroscedastic Nonparametric Regression Models [J].
Wang, Lichun .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) :2731-2740
[37]   Posterior consistency in linear models under shrinkage priors [J].
Armagan, A. ;
Dunson, D. B. ;
Lee, J. ;
Bajwa, W. U. ;
Strawn, N. .
BIOMETRIKA, 2013, 100 (04) :1011-1018
[38]   Posterior consistency of random effects models for binary data [J].
Kim, Yongdai ;
Kim, Dohyun .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) :3391-3399
[39]   Bayesian approach for mixture models with grouped data [J].
Gau, Shiow-Lan ;
Tapsoba, Jean de Dieu ;
Lee, Shen-Ming .
COMPUTATIONAL STATISTICS, 2014, 29 (05) :1025-1043
[40]   Bayesian mixture models with repulsive and attractive atoms [J].
Beraha, Mario ;
Argiento, Raffaele ;
Camerlenghi, Federico ;
Guglielmi, Alessandra .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2025,