On posterior consistency of tail index for Bayesian kernel mixture models

被引:3
作者
Li, Cheng [1 ]
Lin, Lizhen [2 ]
Dunson, David B. [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
heavy tailed distribution; kernel mixture model; normalized random measures; posterior consistency; tail index; DENSITY-ESTIMATION; DIRICHLET MIXTURES; CONVERGENCE-RATES; INFERENCE; PARAMETERS; EXPONENT; BOUNDS;
D O I
10.3150/18-BEJ1043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic theory of tail index estimation has been studied extensively in the frequentist literature on extreme values, but rarely in the Bayesian context. We investigate whether popular Bayesian kernel mixture models are able to support heavy tailed distributions and consistently estimate the tail index. We show that posterior inconsistency in tail index is surprisingly common for both parametric and nonparametric mixture models. We then present a set of sufficient conditions under which posterior consistency in tail index can be achieved, and verify these conditions for Pareto mixture models under general mixing priors.
引用
收藏
页码:1999 / 2028
页数:30
相关论文
共 50 条
[21]   Bayesian mixture models for cytometry data analysis [J].
Lin, Lin ;
Hejblum, Boris P. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
[22]   High-dimensional posterior consistency of the Bayesian lasso [J].
Dasgupta, Shibasish .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) :6700-6708
[23]   Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs [J].
Pokern, Y. ;
Stuart, A. M. ;
van Zanten, J. H. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (02) :603-628
[24]   Overfitting Bayesian Mixture Models with an Unknown Number of Components [J].
van Havre, Zoe ;
White, Nicole ;
Rousseau, Judith ;
Mengersen, Kerrie .
PLOS ONE, 2015, 10 (07)
[25]   Bayesian Dependent Mixture Models: A Predictive Comparison and Survey [J].
Wade, Sara ;
Inacio, Vanda .
STATISTICAL SCIENCE, 2025, 40 (01) :81-108
[26]   Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators [J].
Kekkonen, Hanne ;
Lassas, Matti ;
Siltanen, Samuli .
INVERSE PROBLEMS, 2016, 32 (08)
[27]   Testing the tail index in autoregressive models [J].
Jureckova, Jana ;
Koul, Hira L. ;
Picek, Jan .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (03) :579-598
[28]   Testing the tail index in autoregressive models [J].
Jana Jurečková ;
Hira L. Koul ;
Jan Picek .
Annals of the Institute of Statistical Mathematics, 2009, 61 :579-598
[29]   Bayesian nonparametric estimation and consistency of mixed multinomial logit choice models [J].
De Blasi, Pierpaolo ;
James, Lancelot F. ;
Lau, John W. .
BERNOULLI, 2010, 16 (03) :679-704
[30]   Kernel mixture model for probability density estimation in Bayesian classifiers [J].
Wenyu Zhang ;
Zhenjiang Zhang ;
Han-Chieh Chao ;
Fan-Hsun Tseng .
Data Mining and Knowledge Discovery, 2018, 32 :675-707