On posterior consistency of tail index for Bayesian kernel mixture models

被引:3
|
作者
Li, Cheng [1 ]
Lin, Lizhen [2 ]
Dunson, David B. [3 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
heavy tailed distribution; kernel mixture model; normalized random measures; posterior consistency; tail index; DENSITY-ESTIMATION; DIRICHLET MIXTURES; CONVERGENCE-RATES; INFERENCE; PARAMETERS; EXPONENT; BOUNDS;
D O I
10.3150/18-BEJ1043
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic theory of tail index estimation has been studied extensively in the frequentist literature on extreme values, but rarely in the Bayesian context. We investigate whether popular Bayesian kernel mixture models are able to support heavy tailed distributions and consistently estimate the tail index. We show that posterior inconsistency in tail index is surprisingly common for both parametric and nonparametric mixture models. We then present a set of sufficient conditions under which posterior consistency in tail index can be achieved, and verify these conditions for Pareto mixture models under general mixing priors.
引用
收藏
页码:1999 / 2028
页数:30
相关论文
共 50 条
  • [1] Bayesian mixture models (in)consistency for the number of clusters
    Alamichel, Louise
    Bystrova, Daria
    Arbel, Julyan
    King, Guillaume Kon Kam
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (04) : 1619 - 1660
  • [2] Uniform in bandwidth consistency of kernel estimators of the tail index
    Julia Dony
    David M. Mason
    Extremes, 2010, 13 : 353 - 371
  • [3] Uniform in bandwidth consistency of kernel estimators of the tail index
    Dony, Julia
    Mason, David M.
    EXTREMES, 2010, 13 (03) : 353 - 371
  • [4] On Posterior Consistency of Bayesian Factor Models in High Dimensions*
    Ma, Yucong
    Liu, Jun S.
    BAYESIAN ANALYSIS, 2022, 17 (03): : 901 - 929
  • [5] Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models
    Xie, Fangzheng
    Xu, Yanxun
    BAYESIAN ANALYSIS, 2020, 15 (01): : 159 - 186
  • [6] On posterior contraction of parameters and interpretability in Bayesian mixture modeling
    Guha, Aritra
    Ho, Nhat
    Nguyen, Xuanlong
    BERNOULLI, 2021, 27 (04) : 2159 - 2188
  • [7] POSTERIOR GRAPH SELECTION AND ESTIMATION CONSISTENCY FOR HIGH-DIMENSIONAL BAYESIAN DAG MODELS
    Cao, Xuan
    Khare, Kshitij
    Ghosh, Malay
    ANNALS OF STATISTICS, 2019, 47 (01) : 319 - 348
  • [8] High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models
    Ghosh, Satyajit
    Khare, Kshitij
    Michailidis, George
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 735 - 748
  • [9] Consistency of the MLE under Mixture Models
    Chen, Jiahua
    STATISTICAL SCIENCE, 2017, 32 (01) : 47 - 63
  • [10] UNIFORM CONSISTENCY IN NONPARAMETRIC MIXTURE MODELS
    Aragam, Bryon
    Yang, Ruiyi
    ANNALS OF STATISTICS, 2023, 51 (01) : 362 - 390