NMR Quantum Computing

被引:3
作者
Zhang, Zhigang [1 ]
Chen, Goong [1 ]
Diao, Zijian [2 ]
Hemmer, Philip R. [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Ohio Univ Eastern, Dept Mat, St. Clairsville, OH 43950 USA
[3] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
ADVANCES IN APPLIED MATHEMATICS AND GLOBAL OPTIMIZATION | 2009年 / 17卷
关键词
NUCLEAR-MAGNETIC-RESONANCE; EFFECTIVE PURE STATES; HIGH-RESOLUTION NMR; LATTICE-GAS MODEL; EXPERIMENTAL REALIZATION; SEARCH ALGORITHM; FACTORING ALGORITHM; FOURIER-TRANSFORM; COMPUTATION; SPIN;
D O I
10.1007/978-0-387-75714-8_14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum computing is at the forefront of scientific and technological research and development of the 21st century. NMR. quantum computing is one the most mature technologies for implementing quantum computation. It utilizes the motion of spins of nuclei in custom-designed molecules manipulated by RF pulses. The motion is oil a nano- or microscopic scale governed by the Schrodinger equation in quantum mechanics. In this chapter, we explain the basic ideas and principles of NMR quantum computing, including basic atomic physics, NMR quantum gates; and operations. New progress in optically addressed solid-state NMR is expounded. Examples of Shor's algorithm for factorization of composite integers and the quantum lattice-gas algorithm for the diffusion partial differential equation are also illustrated.
引用
收藏
页码:465 / +
页数:7
相关论文
共 120 条
[1]   Solid-state silicon NMR quantum computer [J].
Abe, E ;
Itoh, KM ;
Ladd, TD ;
Goldman, JR ;
Yamaguchi, F ;
Yamamoto, Y .
JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (01) :175-178
[2]  
BARENCO A, QUANTPH9503016
[3]   THE COMPUTER AS A PHYSICAL SYSTEM - A MICROSCOPIC QUANTUM-MECHANICAL HAMILTONIAN MODEL OF COMPUTERS AS REPRESENTED BY TURING-MACHINES [J].
BENIOFF, P .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (05) :563-591
[4]  
Bennett C.H., 1984, P IEEE INT C COMP SY, V175, DOI DOI 10.1016/J.TCS.2014.05.025
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Quantum information theory [J].
Bennett, CH ;
Shor, PW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2724-2742
[7]   Simulation of the diffusion equation on a type-II quantum computer [J].
Berman, GP ;
Ezhov, AA ;
Kamenev, DI ;
Yepez, J .
PHYSICAL REVIEW A, 2002, 66 (01) :123101-123108
[8]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[9]  
BLOCH F, 1946, PHYS REV, V70, P460, DOI 10.1103/PhysRev.70.460
[10]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579