Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36
被引:44
作者:
Poulin, Myles B.
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Poulin, Myles B.
[1
]
Schneck, Jessica L.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Schneck, Jessica L.
[2
]
Matico, Rosalie E.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Matico, Rosalie E.
[2
]
McDevitt, Patrick J.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
McDevitt, Patrick J.
[2
]
Huddleston, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Huddleston, Michael J.
[2
]
Hou, Wangfang
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Hou, Wangfang
[2
]
Johnson, Neil W.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Canc Epigenet Discovery Performance Unit, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Johnson, Neil W.
[3
]
Thrall, Sara H.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Thrall, Sara H.
[2
]
Meek, Thomas D.
论文数: 0引用数: 0
h-index: 0
机构:
GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USA
Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Meek, Thomas D.
[2
,4
]
Schramm, Vern L.
论文数: 0引用数: 0
h-index: 0
机构:
Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USAYeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
Schramm, Vern L.
[1
]
机构:
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, 1300 Morris Pk Ave, Bronx, NY 10461 USA
[2] GlaxoSmithKline, Biol Sci Platform Technol & Sci, Collegeville, PA 19426 USA
[3] GlaxoSmithKline, Canc Epigenet Discovery Performance Unit, Collegeville, PA 19426 USA
[4] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-C-14 and 36S and secondary Me-H-3(3), Me-H-2(3), 5'-C-14, and 5'-H-3(2) kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-L-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 angstrom) and bond making to the attacking nucleophile (2.10 angstrom) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.