Studies of human hair by friction force microscopy with the hair-model-probe

被引:26
作者
Sadaie, Megumi
Nishikawa, Naoki
Ohnishi, Satomi [1 ]
Tamada, Kaoru
Yase, Kiyoshi
Hara, Masahiko
机构
[1] Natl Inst Adv Ind Sci & Technol, Photon Res Inst, Tsukuba, Ibaraki 3058565, Japan
[2] Lion Corp, Analyt Res Ctr, Edogawa Ku, Tokyo 1320035, Japan
[3] Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5095, Australia
[4] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Dept Elect Chem, Midori Ku, Yokohama, Kanagawa 2268502, Japan
基金
澳大利亚研究理事会;
关键词
human hair; friction force microscopy; hair-model-probe; self-assembled monolayer; striations;
D O I
10.1016/j.colsurfb.2006.06.004
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We employed a cantilever modified with a self-assembled monolayer (SAM) as a "hair-model-probe" for friction force microscopy (FFM) to measure friction acting between hair and hair-like surfaces. The "hair-model-probe" was prepared by forming a SAM of octadecanethiol on a gold-coated cantilever. We investigated frictional properties of human hair at both root and tip, and the dependency on applied load, influence of scanning direction, and local. frictional distribution. The friction coefficient of the hair tip was greater than that of the hair root. Load dependency of friction at the hair tip was clearly observed, while friction at the hair root was less dependent on applied load. At the hair root, an anisotropic frictional property was observed: friction force along the long axis of the hair fiber was about 1.5-2 times larger than that along the short axis. Atomic force microscopy (AFM) images showed striations on the cuticle cells that have about 6 nm depth and their long axis oriented in the direction of the hair fiber. The frictional distribution images revealed that the local areas showing strong shear corresponded to striations. Since such distribution of friction was not observed at the hair tip, it is suggested that the anisotropic frictional property at the hair root was caused mainly by the striations. The frictional distribution in regions that excluded the striations also showed the anisotropic frictional property that friction parallel to the long axis of the hair fiber is greater than that along the short axis. This result suggests that the orientation of fatty acid molecules comprising the fat layer (F-layer) may also contribute to the anisotropic frictional property. We have concluded that loss of the F-layer is a dominant cause of strong friction detected at the hair tip, and at the striations of the hair root. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 35 条
[1]  
BOWDEN FP, 1992, FRICTION LUBRICATION, P3
[2]   Effect of the covalently linked fatty acid 18-MEA on the nanotribology of hair's outermost surface [J].
Breakspear, S ;
Smith, JR ;
Luengo, G .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 149 (03) :235-242
[3]   Analysis of experimental load dependence of two-dimensional atomic-scale friction [J].
Fujisawa, S ;
Yokoyama, K ;
Sugawara, Y ;
Morita, S .
PHYSICAL REVIEW B, 1998, 58 (08) :4909-4916
[4]  
Gao T, 2001, J COSMET SCI, V52, P103
[5]  
GARCIA ML, 1978, J SOC COSMET CHEM, V29, P155
[6]  
GARCIA ML, 1976, J SOC COSMET CHEM, V27, P379
[7]   NANOMETER-SCALE MAPPING OF CHEMICALLY DISTINCT DOMAINS AT WELL-DEFINED ORGANIC INTERFACES USING FRICTIONAL FORCE MICROSCOPY [J].
GREEN, JBD ;
MCDERMOTT, MT ;
PORTER, MD ;
SIPERKO, LM .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (27) :10960-10965
[8]   PROBING MOLECULAR RELAXATION ON POLYMER SURFACES WITH FRICTION FORCE MICROSCOPY [J].
HAUGSTAD, G ;
GLADFELTER, WL ;
WEBERG, EB ;
WEBERG, RT ;
JONES, RR .
LANGMUIR, 1995, 11 (09) :3473-3482
[9]  
Horr TJ, 1997, TEXT RES J, V67, P1
[10]  
HOSOKAWA M, 2001, FRAGRANCE J, V29, P96