FSL-MRS: An end-to-end spectroscopy analysis package

被引:60
作者
Clarke, William T. [1 ,2 ]
Stagg, Charlotte J. [1 ,2 ]
Jbabdi, Saad [1 ]
机构
[1] Univ Oxford, Nuffield Dept Clin Neurosci, FMRIB, Wellcome Ctr Integrat Neuroimaging, Oxford, England
[2] Univ Oxford, MRC Brain Network Dynam Unit, Oxford, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Bayesian fitting; MRS; MRSI; open‐ source; spectroscopy; METABOLITE CONCENTRATIONS; HUMAN BRAIN; WATER;
D O I
10.1002/mrm.28630
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose We introduce FSL-MRS, an end-to-end, modular, open-source MRS analysis toolbox. It provides spectroscopic data conversion, preprocessing, spectral simulation, fitting, quantitation, and visualization. Methods The FSL-MRS package is modular. Its programs operate on data in a standard format (Neuroimaging Informatics Technology Initiative [NIfTI]) capable of storing single-voxel and multivoxel spectroscopy, including spatial orientation information. The FSL-MRS toolbox includes tools for preprocessing of raw spectroscopy data, including coil combination, frequency and phase alignment, and filtering. A density matrix simulation program is supplied for generation of basis spectra from simple text-based descriptions of pulse sequences. Fitting is based on linear combination of basis spectra and implements Markov chain Monte Carlo optimization for the estimation of the full posterior distribution of metabolite concentrations. Validation of the fitting is carried out on independently created simulated data, phantom data, and three in vivo human data sets (257 single-voxel spectroscopy and 8 MRSI data sets) at 3 T and 7 T. Interactive HTML reports are automatically generated by processing and fitting stages of the toolbox. The FSL-MRS package can be used on the command line or interactively in the Python language. Results Validation of the fitting shows low error in simulation (median error of 11.9%) and in phantom (3.4%). Average correlation between a third-party toolbox (LCModel) and FSL-MRS was high (0.53-0.81) in all three in vivo data sets. Conclusion The FSL-MRS toolbox is designed to be flexible and extensible to new forms of spectroscopic acquisitions. Custom fitting models can be specified within the framework for dynamic or multivoxel spectroscopy. It is available as part of the FMRIB Software Library.
引用
收藏
页码:2950 / 2964
页数:15
相关论文
共 52 条
[1]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[2]   Variational Bayesian Inference for a Nonlinear Forward Model [J].
Chappell, Michael A. ;
Groves, Adrian R. ;
Whitcher, Brandon ;
Woolrich, Mark W. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) :223-236
[3]   Density-weighted concentric rings k-space trajectory for 1H magnetic resonance spectroscopic imaging at 7T [J].
Chiew, Mark ;
Jiang, Wenwen ;
Burns, Brian ;
Larson, Peder ;
Steel, Adam ;
Jezzard, Peter ;
Thomas, M. Albert ;
Emir, Uzay E. .
NMR IN BIOMEDICINE, 2018, 31 (01)
[4]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173
[5]   High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo [J].
de Graaf, Robin A. ;
Brown, Peter B. ;
McIntyre, Scott ;
Nixon, Terence W. ;
Behar, Kevin L. ;
Rothman, Douglas L. .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :386-394
[6]  
Deelchand DK, 2020, MRSPA MAGNETIC RESON
[7]   Gannet: A Batch-Processing Tool for the Quantitative Analysis of Gamma-Aminobutyric Acid-Edited MR Spectroscopy Spectra [J].
Edden, Richard A. E. ;
Puts, Nicolaas A. J. ;
Harris, Ashley D. ;
Barker, Peter B. ;
Evans, C. John .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 40 (06) :1445-1452
[8]   Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming [J].
Emir, Uzay E. ;
Auerbach, Edward J. ;
Van De Moortele, Pierre-Francois ;
Marjanska, Malgorzata ;
Ugurbil, Kamil ;
Terpstra, Melissa ;
Tkac, Ivan ;
Oez, Guelin .
NMR IN BIOMEDICINE, 2012, 25 (01) :152-160
[9]  
Ernst R. R., 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
[10]  
Friston KJ, 2007, STAT PARAMETRIC MAPP, Vvii, P647