Sparse random matrices have simple spectrum

被引:4
作者
Luh, Kyle [1 ]
Van Vu [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 04期
基金
美国国家科学基金会;
关键词
Random matrices; Sparse matrices; Eigenvalue degeneracy; Random graphs; Graph isomorphism; INVERTIBILITY; UNIVERSALITY; WIGNER; GAP;
D O I
10.1214/19-AIHP1032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let M-n be a class of symmetric sparse random matrices, with independent entries M-ij = delta(ij)xi(ij) for i <= j. delta(ij) are i.i.d. Bernoulli random variables taking the value 1 with probability p >= n(-1+delta) for any constant delta > 0 and xi(ij) are i.i.d. centered, subgaussian random variables. We show that with high probability this class of random matrices has simple spectrum (i.e. the eigenvalues appear with multiplicity one). We can slightly modify our proof to show that the adjacency matrix of a sparse Erdos-Renyi graph has simple spectrum for n(-1+delta) <= p <= 1-n(-1+delta). These results are optimal in the exponent. The result for graphs has connections to the notorious graph isomorphism problem.
引用
收藏
页码:2307 / 2328
页数:22
相关论文
共 25 条
  • [1] Graph Isomorphism in Quasipolynomial Time [Extended Abstract]
    Babai, Laszlo
    [J]. STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 684 - 697
  • [2] Babai Laszlo, 1982, P 14 ANN ACM S THEOR, P310, DOI [DOI 10.1145/800070, 10.1145/800070]
  • [3] Basak A., 2018, SHARP TRANSITION INV
  • [4] Invertibility of sparse non-Hermitian matrices
    Basak, Anirban
    Rudelson, Mark
    [J]. ADVANCES IN MATHEMATICS, 2017, 310 : 426 - 483
  • [5] EXTREME GAPS BETWEEN EIGENVALUES OF RANDOM MATRICES
    Ben Arous, Gerard
    Bourgade, Paul
    [J]. ANNALS OF PROBABILITY, 2013, 41 (04) : 2648 - 2681
  • [6] Low-Rank Approximation and Regression in Input Sparsity Time
    Clarkson, Kenneth L.
    Woodruff, David P.
    [J]. JOURNAL OF THE ACM, 2017, 63 (06)
  • [7] Dasgupta A, 2010, ACM S THEORY COMPUT, P341
  • [8] Erd6s L., 2010, INT MATH RES NOT IMR, V3, P436, DOI [10.1093/imrn/rnp136, DOI 10.1093/IMRN/RNP136]
  • [9] Erdos L., 2012, Gap Universality of Generalized Wigner and beta-Ensembles
  • [10] Gap universality of generalized Wigner and β-ensembles
    Erdos, Laslo
    Yau, Horng-Tzer
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (08) : 1927 - 2036