An auto-learning approach for network intrusion detection

被引:6
作者
Boulaiche, Ammar [1 ,2 ]
Adi, Kamel [2 ]
机构
[1] Univ Bejaia, Dept Comp Sci, Bejaia 06000, Algeria
[2] Univ Quebec Outaouais, Comp Secur Res Lab, Quebec City, PQ, Canada
关键词
Intrusion detection; Honeypots; Fuzzy hashing; DARPA'99 dataset; UNSW-NB15; dataset; LONGEST COMMON SUBSEQUENCE; SIGNATURES; GENERATION; SET;
D O I
10.1007/s11235-017-0395-z
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we propose a novel intrusion detection technique with a fully automatic attack signatures generation capability. The proposed approach exploits a honeypot traffic data analysis to build an attack scenarios database, used to detect potential intrusions. Furthermore, for an effective and efficient intrusion detection mechanism, we introduce several new or adapted algorithms for signature generation, signature comparison, etc. Finally, we use DARPA'99 and UNSW-NB15 traffic to evaluate the proposed approach. The results indicate that the generated attack signatures are of high quality with low rates of false negatives and false positives.
引用
收藏
页码:277 / 294
页数:18
相关论文
共 50 条
[31]   Comparative Evaluation of Network-Based Intrusion Detection: Deep Learning vs Traditional Machine Learning Approach [J].
Udurume, Miracle ;
Shakhov, Vladimir ;
Koo, Insoo .
2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, :520-525
[32]   Federal Deep Learning Approach of Intrusion Detection System for In-Vehicle Communication Network Security [J].
Na, In-Seop ;
Haldorai, Anandakumar ;
Naik, Nithesh .
IEEE ACCESS, 2025, 13 :2215-2228
[33]   Twin Variational Auto-Encoder for Representation Learning in IoT Intrusion Detection [J].
Phai Vu Dinh ;
Nguyen Quang Uy ;
Nguyen, Diep N. ;
Dinh Thai Hoang ;
Son Pham Bao ;
Dutkiewicz, Eryk .
2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, :848-853
[34]   A Fused Machine Learning Approach for Intrusion Detection System [J].
Farooq, Muhammad Sajid ;
Abbas, Sagheer ;
Sultan, Kiran ;
Atta-ur-Rahman, Muhammad Adnan ;
Khan, Muhammad Adnan ;
Mosavi, Amir .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02) :2607-2623
[35]   Deep Learning Approach for Intelligent Intrusion Detection System [J].
Vinayakumar, R. ;
Alazab, Mamoun ;
Soman, K. P. ;
Poornachandran, Prabaharan ;
Al-Nemrat, Ameer ;
Venkatraman, Sitalakshmi .
IEEE ACCESS, 2019, 7 :41525-41550
[36]   A bidirectional LSTM deep learning approach for intrusion detection [J].
Imrana, Yakubu ;
Xiang, Yanping ;
Ali, Liaqat ;
Abdul-Rauf, Zaharawu .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185 (185)
[37]   Intrusion Detection on QUIC Traffic: A Machine Learning Approach [J].
Al-Bakhat, Lama ;
Almuhammadi, Sultan .
2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), 2022, :194-199
[38]   Towards a Hierarchical Deep Learning Approach for Intrusion Detection [J].
Alin, Francois ;
Chemchem, Amine ;
Nolot, Florent ;
Flauzac, Olivier ;
Krajecki, Michael .
MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 :15-27
[39]   A Hybrid Approach for Intrusion Detection Based on Machine Learning [J].
Singh, Rohit ;
Kalra, Mala ;
Solanki, Shano .
PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2019), 2019, :187-192
[40]   A Machine Learning Approach for Intrusion Detection in Smart Cities [J].
Elsaeidy, Asmaa ;
Munasinghe, Kumudu S. ;
Sharma, Dharmendra ;
Jamalipour, Abbas .
2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,