The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment

被引:32
作者
Zhuang, Guo-Liang [1 ]
Wey, Ming-Yen [1 ]
Tseng, Hui-Hsin [2 ,3 ]
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
[2] Chung Shan Med Univ, Sch Occupat Safety & Hlth, Taichung 402, Taiwan
[3] Chung Shan Med Univ Hosp, Dept Occupat Med, Taichung 402, Taiwan
关键词
Thermal annealing; PPO; Silica; Crystallinity; Mixed matrix membrane; Gas separation; INDUCED PLASTICIZATION; MOLECULAR-WEIGHT; NATURAL-GAS; CO2; PERMEATION; PERFORMANCE; SURFACE; PURIFICATION; MORPHOLOGY; CHALLENGES;
D O I
10.1016/j.cherd.2015.08.020
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The transport properties of gases in PPO (poly(2,6-dimethyl-1,4-phenylene oxide))-silica mixed matrix membranes (MMMs) were improved using a thermal annealing method. The density and crystallinity properties of the MMMs were characterized using TGA, XRD, FESEM, and FTIR to clarify the predominant mechanism of thermal annealing. The results indicate that the thermal-annealing treatment can induce the polymer chains to re-crystallize by annealing above T-g rather than causing them to exhibit solvent vaporization when MMMs were used. After thermal annealing, a significant enhancement in the gas separation, thermal stability, and plasticization resistance was observed for the PPO-silica MMMs. PPO-S5-220 (5 wt.% silica) MMM produced the highest H-2 permeability of 257.23 Barrer and the highest H-2/CO2 selectivity of 3.6. (C) 2015 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 332
页数:14
相关论文
共 60 条
[31]   Moisture management of polylactides: The effect of heat treatment [J].
Koo, Donghun ;
Du, An ;
Palmese, Giuseppe R. ;
Cairncross, Richard A. .
POLYMER, 2012, 53 (05) :1115-1123
[32]  
Lin D., 1991, HDB INFRARED RAMAN C
[33]   Integrated membrane material and process development for gas separation [J].
Lin, Haiqing .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 4 :54-61
[34]   Plasticization-enhanced hydrogen purification using polymeric membranes [J].
Lin, HQ ;
Van Wagner, E ;
Freeman, BD ;
Toy, LG ;
Gupta, RP .
SCIENCE, 2006, 311 (5761) :639-642
[35]   Sub-ambient temperature flue gas carbon dioxide capture via Matrimid® hollow fiber membranes [J].
Liu, Lu ;
Sanders, Edgar S. ;
Kulkarni, Sudhir S. ;
Hasse, David J. ;
Koros, William J. .
JOURNAL OF MEMBRANE SCIENCE, 2014, 465 :49-55
[36]   Recent progress in the design of advanced PEO-containing membranes for CO2 removal [J].
Liu, Song Lin ;
Shao, Lu ;
Chua, Mei Ling ;
Lau, Cher Hon ;
Wang, Huan ;
Quan, Shuai .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (07) :1089-1120
[37]   Phase transition in nylon 6/clay nanocomposites on annealing [J].
Liu, XH ;
Wu, QJ .
POLYMER, 2002, 43 (06) :1933-1936
[38]   Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes [J].
Merkel, TC ;
Freeman, BD ;
Spontak, RJ ;
He, Z ;
Pinnau, I ;
Meakin, P ;
Hill, AJ .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :109-123
[39]   Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance [J].
Park, Sunkyu ;
Baker, John O. ;
Himmel, Michael E. ;
Parilla, Philip A. ;
Johnson, David K. .
BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
[40]   SEPARATION PROPERTIES AND SURFACE-MORPHOLOGY OF POLYACRYLONITRILE MEMBRANES [J].
PAUL, D ;
KAMUSEWITZ, H ;
HICKE, HG ;
BUSCHATZ, H .
ACTA POLYMERICA, 1992, 43 (06) :353-355