A scheduling quasi-min-max model predictive control algorithm for nonlinear systems

被引:31
作者
Lu, YH
Arkun, Y [1 ]
机构
[1] KOC Univ, Coll Engn, Istanbul, Turkey
[2] Georgia Inst Technol, Sch Chem Engn, Atlanta, GA 30332 USA
关键词
scheduling; quasi-min-max; model predictive control (MPC); nonlinear systems; linear matrix inequalities (LMIs); linear parameter varying (LPV); polytope updating;
D O I
10.1016/S0959-1524(01)00055-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a model predictive control algorithm is designed for nonlinear systems. Combination of a linear model with a linear parameter varying model approximates the nonlinear behavior. The linear model is used to express the current nonlinear dynamics, and the linear parameter varying model is used to cover the future nonlinear behavior. In the algorithm, a "quasi-worst-case" value of an infinite horizon objective function is minimized. Closed-loop stability is guaranteed when the algorithm is implemented in a receding horizon fashion by including a Lyapunov constraint in the formulation. The proposed approach is applied to control a jacketed styrene polymerization reactor. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:589 / 604
页数:16
相关论文
共 15 条
[1]   SELF-SCHEDULED H-INFINITY CONTROL OF LINEAR PARAMETER-VARYING SYSTEMS - A DESIGN EXAMPLE [J].
APKARIAN, P ;
GAHINET, P ;
BECKER, G .
AUTOMATICA, 1995, 31 (09) :1251-1261
[2]  
ARKUN Y, 1998, NATO ASI SERIES
[3]   Estimation of nonlinear systems using linear multiple models [J].
Banerjee, A ;
Arkun, Y ;
Ogunnaike, B ;
Pearson, R .
AICHE JOURNAL, 1997, 43 (05) :1204-1226
[4]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[5]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[6]  
DEOLIVEIRA SL, 1998, NATO ADV STUD I NONL
[7]  
JOHANSEN TA, 1993, 12TH IFAC WORLD C SY, V1, P431
[8]  
LIU RW, 1968, IEEE T AUTOMAT CONTR, VAC13, P384
[9]  
LU Y, 1999, P AM CONTR C, P2272
[10]   Quasi-Min-Max MPC algorithms for LPV systems [J].
Lu, YH ;
Arkun, Y .
AUTOMATICA, 2000, 36 (04) :527-540