Hybridization expansion Monte Carlo simulation of multi-orbital quantum impurity problems: matrix product formalism and improved sampling

被引:17
作者
Shinaoka, Hiroshi [1 ]
Dolfi, Michele [1 ]
Troyer, Matthias [1 ]
Werner, Philipp [2 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
关键词
quantum Monte Carlo simulations; MEAN-FIELD THEORY; RENORMALIZATION-GROUPS; DENSITY; LIMIT;
D O I
10.1088/1742-5468/2014/06/P06012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explore two complementary modifications of the hybridization-expansion continuous-time Monte Carlo method, aiming at large multi-orbital quantum impurity problems. One idea is to compute the imaginary-time propagation using a matrix product state representation. We show that bond dimensions considerably smaller than the dimension of the Hilbert space are sufficient to obtain accurate results and that this approach scales polynomially, rather than exponentially with the number of orbitals. Based on scaling analyses, we conclude that a matrix product state implementation will outperform the exact-diagonalization based method for quantum impurity problems with more than 12 orbitals. The second idea is an improved Monte Carlo sampling scheme which is applicable to all variants of the hybridization expansion method. We show that this so-called sliding window sampling scheme speeds up the simulation by at least an order of magnitude for a broad range of model parameters, with the largest improvements at low temperature.
引用
收藏
页数:24
相关论文
共 24 条
[1]   Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined GW and dynamical mean field theory [J].
Ayral, Thomas ;
Biermann, Silke ;
Werner, Philipp .
PHYSICAL REVIEW B, 2013, 87 (12)
[2]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[3]  
Dolfi M, 2014, UNPUB
[4]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[5]   Continuous-time Monte Carlo methods for quantum impurity models [J].
Gull, Emanuel ;
Millis, Andrew J. ;
Lichtenstein, Alexander I. ;
Rubtsov, Alexey N. ;
Troyer, Matthias ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :349-404
[6]   Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base [J].
Haule, Kristjan .
PHYSICAL REVIEW B, 2007, 75 (15)
[7]   Electronic structure calculations with dynamical mean-field theory [J].
Kotliar, G. ;
Savrasov, S. Y. ;
Haule, K. ;
Oudovenko, V. S. ;
Parcollet, O. ;
Marianetti, C. A. .
REVIEWS OF MODERN PHYSICS, 2006, 78 (03) :865-951
[8]   Krylov implementation of the hybridization expansion impurity solver and application to 5-orbital models [J].
Laeuchli, Andreas M. ;
Werner, Philipp .
PHYSICAL REVIEW B, 2009, 80 (23)
[9]   Quantum cluster theories [J].
Maier, T ;
Jarrell, M ;
Pruschke, T ;
Hettler, MH .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :1027-1080
[10]   Spectral density of the two-impurity Anderson model [J].
Nishimoto, S ;
Pruschke, T ;
Noack, RM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (03) :981-995