MOMENTS AND LYAPUNOV EXPONENTS FOR THE PARABOLIC ANDERSON MODEL

被引:20
作者
Borodin, Alexei [1 ,2 ]
Corwin, Ivan [1 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Clay Math Inst, Providence, RI 02903 USA
基金
美国国家科学基金会;
关键词
Parabolic Anderson model; Lyapunov exponents; POLYMER;
D O I
10.1214/13-AAP944
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the parabolic Anderson model in (1 + 1) dimensions with nearest neighbor jumps and space time white noise (discrete space/continuous time). We prove a contour integral formula for the second moment and compute the second moment Lyapunov exponent. For the model with only jumps to the right, we prove a contour integral formula for all moments and compute moment Lyapunov exponents of all orders.
引用
收藏
页码:1172 / 1198
页数:27
相关论文
共 50 条
[11]   POSITIVITY OF LYAPUNOV EXPONENTS FOR ANDERSON-TYPE MODELS ON TWO COUPLED STRINGS [J].
Boumaza, Hakim ;
Stolz, Guenter .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
[12]   Time correlations for the parabolic Anderson model [J].
Gaertner, Juergen ;
Schnitzler, Adrian .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1519-1548
[13]   On large deviations for the parabolic Anderson model [J].
M. Cranston ;
D. Gauthier ;
T. S. Mountford .
Probability Theory and Related Fields, 2010, 147 :349-378
[14]   On large deviations for the parabolic Anderson model [J].
Cranston, M. ;
Gauthier, D. ;
Mountford, T. S. .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) :349-378
[15]   Estimation of Lyapunov exponents for a system with sensitive friction model [J].
Jerzy Wojewoda ;
Andrzej Stefański ;
Marian Wiercigroch ;
Tomasz Kapitaniak .
Archive of Applied Mechanics, 2009, 79 :667-677
[16]   A stochastic methodology to adjust controllers based on moments Lyapunov exponents: Application to power systems [J].
Verdejo, Humberto ;
Kliemann, Wolfgang ;
Becker, Cristhian .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2017, 93 :15-29
[17]   Estimation of Lyapunov exponents for a system with sensitive friction model [J].
Wojewoda, Jerzy ;
Stefanski, Andrzej ;
Wiercigroch, Marian ;
Kapitaniak, T .
ARCHIVE OF APPLIED MECHANICS, 2009, 79 (6-7) :667-677
[18]   Differentiability of Lyapunov Exponents [J].
Ferraiol, Thiago F. ;
San Martin, Luiz A. B. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) :289-310
[19]   SECTIONAL LYAPUNOV EXPONENTS [J].
Arbieto, Alexander .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) :3171-3178
[20]   RECURRENCE AND LYAPUNOV EXPONENTS [J].
Saussol, B. ;
Troubetzkoy, S. ;
Vaienti, S. .
MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) :189-203