Non-relativistic global limits of the entropy solutions to the relativistic Euler equations with γ-law

被引:10
作者
Li, Yachun [1 ]
Ren, Xucai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
relativistic Euler equations; Riemann solutions; uniqueness; Lorentz transformation; KINETIC SCHEMES; GAS-DYNAMICS; INITIAL DATA; STABILITY;
D O I
10.3934/cpaa.2006.5.963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the limit as the speed of light c -> infinity of the global entropy solutions of the 2 x 2 relativistic Enter equations for the state p = kappa(2)rho(gamma) (1 < gamma < 2), and find that the limit is the entropy solution of the corresponding non-relativistic Enter equations.
引用
收藏
页码:963 / 979
页数:17
相关论文
共 25 条
[1]   On the stability of the standard Riemann semigroup [J].
Bianchini, S ;
Colombo, RM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :1961-1973
[2]   Stability of Riemann solutions with large oscillation for the relativistic Euler equations [J].
Chen, GQ ;
Li, YC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 202 (02) :332-353
[3]  
CHEN GQ, 2006, UNPU EXISTENCE THEOR
[4]  
CHEN J, 1995, COMMUN PART DIFF EQ, V20, P1602
[5]   Spatially periodic solutions in relativistic isentropic gas dynamics [J].
Frid, H ;
Perepelitsa, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (02) :335-370
[7]   On spherically symmetric solutions of the relativistic Euler equation [J].
Hsu, CH ;
Lin, SS ;
Makino, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 201 (01) :1-24
[8]  
Hsu Cheng-Hsiung, 2001, METHODS APPL ANAL, V8, P159, DOI [10.4310/MAA.2001.v8.n1.a7, DOI 10.4310/MAA.2001.V8.N1.A7]
[9]   Kinetic schemes for the relativistic gas dynamics [J].
Kunik, M ;
Qamar, S ;
Warnecke, G .
NUMERISCHE MATHEMATIK, 2004, 97 (01) :159-191
[10]   Second-order accurate kinetic schemes for the ultra-relativistic Euler equations [J].
Kunik, M ;
Qamar, S ;
Warnecke, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 192 (02) :695-726