Direct numerical method for isoperimetric fractional variational problems based on operational matrix

被引:12
作者
Ezz-Eldien, Samer S. [1 ]
Bhrawy, Ali H. [2 ]
El-Kalaawy, Ahmed A. [2 ]
机构
[1] Assiut Univ, Dept Math, El Kharja, Egypt
[2] Beni Suef Univ, Dept Math, Bani Suwayf, Egypt
关键词
Caputo differentiation; Riemann-Liouville integration; isoperimetric fractional variational problems; Legendre polynomials; operational matrix; Lagrange multipliers method; OPTIMIZATION PROBLEMS; MECHANICS; CALCULUS; SYSTEMS; DERIVATIVES; ENERGY;
D O I
10.1177/1077546317700344
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we applied a direct method for a solution of isoperimetric fractional variational problems. We use shifted Legendre orthonormal polynomials as basis function of operational matrices of fractional differentiation and fractional integration in combination with the Lagrange multipliers technique for converting such isoperimetric fractional variational problems into solving a system of algebraic equations. Also, we show the convergence analysis of the presented technique and introduce some test problems with comparisons between our numerical results with those introduced using different methods.
引用
收藏
页码:3063 / 3076
页数:14
相关论文
共 49 条
[1]  
Abdelkawy MA, 2015, Prog Fract Differ Appl, V1, P187, DOI [10.12785/pfda/010304, DOI 10.12785/PFDA/010304]
[2]   Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the caputo derivative [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1217-1237
[3]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[4]   ISOPERIMETRIC PROBLEMS OF THE CALCULUS OF VARIATIONS WITH FRACTIONAL DERIVATIVES [J].
Almeida, Ricardo ;
Ferreira, Rui A. C. ;
Torres, Delfim F. M. .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) :619-630
[5]   Leitmann's direct method for fractional optimization problems [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :956-962
[6]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[7]  
[Anonymous], 1997, COURSES LECT INT CTR
[8]  
[Anonymous], 2004, CALCULUS VARIATIONS
[9]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[10]   A new Legendre operational technique for delay fractional optimal control problems [J].
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
CALCOLO, 2016, 53 (04) :521-543