Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase

被引:14
作者
Kim, Heejin [1 ,2 ]
Oh, Eun Joong [1 ,2 ]
Lane, Stephan Thomas [1 ,2 ]
Lee, Won-Heong [1 ,2 ,3 ]
Cate, Jamie H. D. [4 ,5 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[3] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Gwangju 500757, South Korea
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
关键词
Cellobiose fermentation; Cellodextrin transporter; Cellobiose phosphorylase; Cerevisiae; ETHANOL-PRODUCTION; CO-FERMENTATION; XYLOSE; YEAST; COFERMENTATION; TRANSPORTERS; STRAIN;
D O I
10.1016/j.jbiotec.2018.04.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway consisting of a cellodextrin transporter and either an intracellular beta-glucosidase or a cellobiose phosphorylase. Among two types of cello dextrin transporters, the passive facilitator CDT-2 has not enabled better cellobiose fermentation than the active transporter CDT-1, which suggests that the CDT-2 might be engineered to provide energetic benefits over the active transporter in cellobiose fermentation. We attempted to improve cellobiose transporting activity of CDT-2 through laboratory evolution. Nine rounds of a serial subculture of S. cerevisiae expressing CDT-2 and cellobiose phosphorylase on cellobiose led to the isolation of an evolved strain capable of fermenting cellobiose to ethanol 10-fold faster than the original strain. After sequence analysis of the isolated CDT-2, a single point mutation on CDT-2 (N3061) was revealed to be responsible for enhanced cellobiose fermentation. Also, the engineered strain expressing the mutant CDT-2 with cellobiose phosphorylase showed a higher ethanol yield than the engineered strain expressing CDT-1 and intracellular beta-glucosidase under anaerobic conditions, suggesting that CDT-2 coupled with cellobiose phosphorylase may be better choices for efficient production of cellulosic ethanol with the engineered yeast
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [41] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Vilela, Leonardo de Figueiredo
    Gomes de Araujo, Veronica Parente
    Paredes, Raquel de Sousa
    da Silva Bon, Elba Pinto
    Goncalves Torres, Fernando Araripe
    Neves, Bianca Cruz
    Araujo Eleutherio, Elis Cristina
    AMB EXPRESS, 2015, 5
  • [42] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Leonardo de Figueiredo Vilela
    Verônica Parente Gomes de Araujo
    Raquel de Sousa Paredes
    Elba Pinto da Silva Bon
    Fernando Araripe Gonçalves Torres
    Bianca Cruz Neves
    Elis Cristina Araújo Eleutherio
    AMB Express, 5
  • [43] Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
    Chomvong, Kulika
    Benjamin, Daniel I.
    Nomura, Daniel K.
    Cate, Jamie H. D.
    MBIO, 2017, 8 (04):
  • [44] The antifungal effect of cellobiose lipid on the cells of Saccharomyces cerevisiae depends on carbon source
    Trilisenko, Ludmila V.
    Kulakovskaya, Ekaterina V.
    Kulakovskaya, Tatiana V.
    Ivanov, Alexander Yu
    Penkov, Nikita V.
    Vagabov, Vladimir M.
    Kulaev, Igor S.
    SPRINGERPLUS, 2012, 1 : 1 - 6
  • [45] Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter
    Kiriyama, Kentaro
    Hara, Kiyotaka Y.
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 96 (04) : 1021 - 1027
  • [46] Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter
    Kentaro Kiriyama
    Kiyotaka Y. Hara
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2012, 96 : 1021 - 1027
  • [47] Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents
    Sun-Ki Kim
    Jung-Hyun Jo
    Yong-Su Jin
    Jin-Ho Seo
    Bioprocess and Biosystems Engineering, 2017, 40 : 683 - 691
  • [48] Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents
    Kim, Sun-Ki
    Jo, Jung-Hyun
    Jin, Yong-Su
    Seo, Jin-Ho
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2017, 40 (05) : 683 - 691
  • [49] Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins
    Dawn T Eriksen
    Pei Chiun Helen Hsieh
    Patrick Lynn
    Huimin Zhao
    Microbial Cell Factories, 12
  • [50] Directed Evolution of a Highly Efficient Cellobiose Utilizing Pathway in an Industrial Saccharomyces cerevisiae strain
    Yuan, Yongbo
    Zhao, Huimin
    BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (11) : 2874 - 2881